Calculus

Limits and Continuity of Functions

Limits and Continuity Logo

Properties of Limits

Solved Problems

Example 3.

Suppose that \(\lim\limits_{x \to 1} f\left( x \right) = 2\) and \(\lim\limits_{x \to 1} g\left( x \right) = 3.\) Calculate the limit \[\lim\limits_{x \to 1} {\frac{{g\left( x \right) - 3f\left( x \right)}}{{{f^2}\left( x \right) + g\left( x \right)}}}.\]

Solution.

\[\lim\limits_{x \to 1} \frac{{g\left( x \right) - 3f\left( x \right)}}{{{f^2}\left( x \right) + g\left( x \right)}} = \frac{{\lim\limits_{x \to 1} \left[ {g\left( x \right) - 3f\left( x \right)} \right]}}{{\lim\limits_{x \to 1} \left[ {{f^2}\left( x \right) + g\left( x \right)} \right]}} = \frac{{\lim\limits_{x \to 1} g\left( x \right) - \lim\limits_{x \to 1} \left[ {3f\left( x \right)} \right]}}{{\lim\limits_{x \to 1} {f^2}\left( x \right) + \lim\limits_{x \to 1} g\left( x \right)}} = \frac{{\lim\limits_{x \to 1} g\left( x \right) - 3\lim\limits_{x \to 1} f\left( x \right)}}{{{{\left[ {\lim\limits_{x \to 1} f\left( x \right)} \right]}^2} + \lim\limits_{x \to 1} g\left( x \right)}} = \frac{{3 - 3 \cdot 2}}{{{2^2} + 3}} = - \frac{3}{7}.\]

Example 4.

Calculate the limit \[\lim\limits_{x \to \infty } {\frac{{3x + \cos x}}{{2x - 7}}}.\]

Solution.

We know that \( - 1 \le \cos x \le 1\) for all \(x.\) Then

\[3x - 1 \le 3x + \cos x \le 3x + 1.\]

Dividing by \(2x - 7 \gt 0,\) we obtain

\[\frac{{3x - 1}}{{2x - 7}} \le \frac{{3x + \cos x}}{{2x - 7}} \le \frac{{3x + 1}}{{2x - 7}}.\]

Since we consider large and positive \(x,\) and, hence, \(2x - 7 \gt 0,\) we do not switch the inequality signs. Then

\[\lim\limits_{x \to \infty } \frac{{3x - 1}}{{2x - 7}} \le \lim\limits_{x \to \infty } \frac{{3x + \cos x}}{{2x - 7}} \le \lim\limits_{x \to \infty } \frac{{3x + 1}}{{2x - 7}}.\]

Calculate the left and right limits:

\[\lim\limits_{x \to \infty } \frac{{3x - 1}}{{2x - 7}} = \lim\limits_{x \to \infty } \frac{{3 - \frac{1}{x}}}{{2 - \frac{7}{x}}} = \frac{3}{2},\;\;\; \lim\limits_{x \to \infty } \frac{{3x + 1}}{{2x - 7}} = \lim\limits_{x \to \infty } \frac{{3 + \frac{1}{x}}}{{2 - \frac{7}{x}}} = \frac{3}{2}.\]

It follows from the Squeeze Theorem that

\[\lim\limits_{x \to \infty } \frac{{3x + \cos x}}{{2x - 7}} = \frac{3}{2}.\]

Example 5.

Find the limit \[\lim\limits_{x \to \infty } {\frac{{2\sin x - 5x}}{{3x + 1}}}.\]

Solution.

We know that \( - 1 \le \sin x \le 1\) for all \(x.\) Then

\[ - 2 \le 2\sin x \le 2.\]

Subtract \(5x\) from all terms of the inequality.

\[ - 2 - 5x \le 2\sin x - 5x \le 2 - 5x.\]

Dividing by \(3x + 1,\) we get

\[\frac{{ - 2 - 5x}}{{3x + 1}} \le \frac{{2\sin x - 5x}}{{3x + 1}} \le \frac{{2 - 5x}}{{3x + 1}}.\]

(We do not switch the inequality signs, since \(3x + 1\) is positive as \(x \to \infty.\))

Calculate the left and right limits:

\[\lim\limits_{x \to \infty } \frac{{ - 2 - 5x}}{{3x + 1}} = \lim\limits_{x \to \infty } \frac{{ - \frac{2}{x} - 5}}{{3 + \frac{1}{x}}} = - \frac{5}{3},\;\;\; \lim\limits_{x \to \infty } \frac{{2 - 5x}}{{3x + 1}} = \lim\limits_{x \to \infty } \frac{{\frac{2}{x} - 5}}{{3 + \frac{1}{x}}} = - \frac{5}{3}.\]

We see that the left and right limits are equal to each other. Then by the Squeeze Theorem,

\[\lim\limits_{x \to \infty } \frac{{2\sin x - 5x}}{{3x + 1}} = - \frac{5}{3}.\]
Page 1 Page 2