L’Hopital’s Rule
L'Hopital's Rule provides a method for evaluating indeterminate forms of type 0/0 or ∞/∞.
Let a be either a finite number or infinity.
- If \(\lim\limits_{x \to a} f\left( x \right) = 0\) and \(\lim\limits_{x \to a} g\left( x \right) = 0,\) then
\[\lim\limits_{x \to a} {\frac{{f\left( x \right)}}{{g\left( x \right)}}} = \lim\limits_{x \to a} {\frac{{f'\left( x \right)}}{{g'\left( x \right)}}};\]
- If \(\lim\limits_{x \to a} f\left( x \right) = \infty\) and \(\lim\limits_{x \to a} g\left( x \right) = \infty,\) then similarly
\[\lim\limits_{x \to a} {\frac{{f\left( x \right)}}{{g\left( x \right)}}} = \lim\limits_{x \to a} {\frac{{f'\left( x \right)}}{{g'\left( x \right)}}}.\]
This rule appeared in 1696 (!) in the first book on differential calculus published by French mathematician Guillaume de l'Hopital (1661−1704).
We can apply L'Hopital's rule to indeterminate forms of type \(0 \cdot \infty,\) \(\infty - \infty,\) \(0^0,\) \(1^{\infty},\) \(\infty^0\) as well. The first two indeterminate forms \(0 \cdot \infty\) and \(\infty - \infty\) can be reduced to the forms \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\) using algebraic transformations. The indeterminate forms \(0^0,\) \(1^{\infty}\) and \(\infty^0\) can be reduced to the form \(0 \cdot \infty\) with the help of identity
L'Hopital's rule also holds for one-sided limits.
Solved Problems
Example 1.
Find the limit \[\lim\limits_{x \to 0} {\frac{{{a^x} - 1}}{x}}.\]
Solution.
Differentiating the numerator and denominator separately, we get
Example 2.
Find the limit \[\lim\limits_{x \to 2} {\frac{{\sqrt {7 + x} - 3}}{{x - 2}}}.\]
Solution.
Because direct substitution leads to an indeterminate form \(\frac{0}{0},\) we can use L'Hopital's rule:
Example 3.
Calculate the limit \[\lim\limits_{x \to 2} \left( {{\frac{4}{{{x^2} - 4}}} - {\frac{1}{{x - 2}}}} \right).\]
Solution.
Here we deal with an inderminate form of type \(\infty - \infty.\) After simple transformations, we have
Example 4.
Find the limit \[\lim\limits_{x \to \infty } {\frac{{{x^2}}}{{{2^x}}}}.\]
Solution.
Using L'Hopital's rule, we can write