Calculate \[\int\limits_C {\sqrt x dx + \sqrt y dy} \] along the curve \(y = {x^2}\) from \(O\left( {0,0} \right)\) to \(A\left( {1,1} \right)\) (Figure \(3\)).
Solution.
We use the formula
\[\int\limits_C {Pdx + Qdy} = \int\limits_a^b {\left[ {P\left( {x,f\left( x \right)} \right) + Q\left( {x,f\left( x \right)} \right)\frac{{df}}{{dx}}} \right]dx} .\]
Substituting \(y = {x^2}\) and \(dy = 2xdx\) in the integrand, we find the answer:
\[\int\limits_C {\sqrt x dx + \sqrt y dy} = \int\limits_0^1 {\sqrt x dx + x \cdot 2xdx} = \int\limits_0^1 {\left( {{x^{\frac{1}{2}}} + 2{x^2}} \right)dx} = \left. {\left( {\frac{{{x^{\frac{3}{2}}}}}{{\frac{3}{2}}} + \frac{{2{x^3}}}{3}} \right)} \right|_0^1 = \frac{2}{3} + \frac{2}{3} = \frac{4}{3}.\]
Example 4.
Evaluate the line integral \[\int\limits_C {ydx + xdy} \] along the curve \(y = {x^2}\) from the point \(O\left( {0,0} \right)\) to the point \(A\left( {1,1} \right)\) (Figure \(3\)).
Solution.
If \(y = f\left( x \right) = {x^2},\) then by the formula
\[\int\limits_C {Pdx + Qdy} = \int\limits_a^b {\left[ {P\left( {x,f\left( x \right)} \right) + Q\left( {x,f\left( x \right)} \right)\frac{{df}}{{dx}}} \right]dx} .\]
Evaluate the line integral \[\int\limits_C {{x^2}dx - xydy},\] where \(C\) is the part of the circle lying in the first quadrant and traversed in the counterclockwise direction (Figure \(5\)).
Solution.
Obviously, the arc of the circle is described by the function \(y = \sqrt {{a^2} - {x^2}},\) where \(a\) is the radius of the circle. (We take the positive value of the root because \(y \gt 0\) in the first quadrant.) Then the differential is
Find the integral \[\int\limits_C {xdx + ydy + \left( {x + y - 1} \right)dz} \] along the curve \(C,\) where \(C\) is the line segment \(AB\) traversed in the direction from the point \(A\left( {1,1,1} \right)\) to the point \(B\left( {2,3,4} \right)\) (Figure \(7\)).
\[
\left\{ \begin{array}{l}
x - 1 = t\\
y - 1 = 2t\\
z - 1 = 3t
\end{array} \right.,\;\; \Rightarrow
\left\{ \begin{array}{l}
x = t + 1\\
y = 2t + 1\\
z = 3t + 1
\end{array} \right..\]
Then we apply the formula
\[\int\limits_C {Pdx + Qdy + Rdz}
= \int\limits_\alpha ^\beta {\left[ {P\left( {x\left( t \right),y\left( t \right),z\left( t \right)} \right)\frac{{dx}}{{dt}} + Q\left( {x\left( t \right),y\left( t \right),z\left( t \right)} \right)\frac{{dy}}{{dt}} + R\left( {x\left( t \right),y\left( t \right),z\left( t \right)} \right)\frac{{dz}}{{dt}}} \right]dt}.\]
Obviously, the parameter \(t\) varies in the interval \(\left[ {0,1} \right].\) Then the line integral becomes