Evaluate the line integral \[\int\limits_C {{x^2}ds},\] where \(C\) is a the curve given by the equation \[y = f\left( x \right) = \ln x, 1 \le x \le e.\]
Solution.
We use the formula
\[\int\limits_C {F\left( {x,y} \right)ds} = \int\limits_a^b {F\left( {x,f\left( x \right)} \right) \sqrt {1 + {{\left( {f'\left( x \right)} \right)}^2}} dx}.\]
Evaluate the integral \[\int\limits_C {ds}\] over the plane curve, where \(C\) is the line segment from \(O\left( {0,0} \right)\) to \(A\left( {1,2} \right)\) (Figure \(4\)).
Calculate the line integral \[\int\limits_C {\frac{{ds}}{{y - x}}},\] where the curve \(C\) is the line segment from \(\left( {0, - 2} \right)\) to \(\left( {4, 0} \right)\) (Figure \(5\)).
Calculate the line integral \[\int\limits_C {xyds},\] where the curve \(C\) is part of the ellipse \[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\] lying in the first quadrant (Figure \(6\)).
Solution.
The equation of the ellipse can be written in the parametric form:
\[
\left\{ \begin{array}{l}
x = a\cos t\\
y = b\sin t
\end{array} \right.,\;\; 0 \le t \le 2\pi .\]
For the arc of the ellipse lying in the first quadrant, we have \(0 \le t \le {\frac{\pi }{2}}.\)
Consequently, by the formula
\[\int\limits_C {F\left( {x,y} \right)ds} = \int\limits_\alpha ^\beta {F\left( {x\left( t \right),y\left( t \right)} \right) \sqrt {{{\left( {x'\left( t \right)} \right)}^2} + {{\left( {y'\left( t \right)} \right)}^2} } dt} ,\]
the line integral becomes
\[I = \int\limits_C {xyds} = \int\limits_0^{\frac{\pi }{2}} {a\cos t \cdot b\sin t \sqrt {{{\left( { - a\sin t} \right)}^2} + {{\left( {b\cos t} \right)}^2}} dt} = \int\limits_0^{\frac{\pi }{2}} {a\cos t \cdot b\sin t \sqrt {{a^2}{{\sin }^2}t + {b^2}{\cos^2}t} \,dt} .\]
Make the substitution. Let \(a\sin t = u\) or \(\sin t = {\frac{u}{a}}.\) Then
Refine the limits of integration. When \(t = 0,\) we have \(u = 0,\) and when \(t = {\frac{\pi }{2}}\), we get \(u = a.\) As a result, the integral can be written as