Calculus

Infinite Sequences and Series

Sequences and Series Logo

The Integral Test

Solved Problems

Example 3.

Determine whether the series \[\sum\limits_{n = 1}^\infty {\frac{1}{{\left( {n + 1} \right)\ln \left( {n + 1} \right)}}}\] converges or diverges.

Solution.

We use the integral test. Calculate the improper integral

\[ \int\limits_1^\infty {\frac{{dx}}{{\left( {x + 1} \right)\ln \left( {x + 1} \right)}}} = \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{dx}}{{\left( {x + 1} \right)\ln \left( {x + 1} \right)}}} = \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{d\left( {x + 1} \right)}}{{\left( {x + 1} \right)\ln \left( {x + 1} \right)}}} = \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{d\ln \left( {x + 1} \right)}}{{\ln \left( {x + 1} \right)}}} = \lim\limits_{n \to \infty } \left. {\left[ {\ln \ln \left( {x + 1} \right)} \right]} \right|_1^n = \lim\limits_{n \to \infty } \left[ {\ln \ln \left( {n + 1} \right) - \ln \ln 2} \right] = \infty .\]

The integral approaches infinity. Therefore, the initial series diverges.

Example 4.

Investigate the series \[\sum\limits_{n = 1}^\infty {\frac{n}{{{n^2} + 1}}} \] for convergence.

Solution.

We evaluate the improper integral:

\[\int\limits_1^\infty {\frac{{xdx}}{{{x^2} + 1}}} = \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{xdx}}{{{x^2} + 1}}} .\]

Make the substitution: \(t = {x^2} + 1.\) Then

\[dt = 2xdx,\;\;\Rightarrow xdx =\frac{{dt}}{2}.\]

The integral becomes

\[ \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{xdx}}{{{x^2} + 1}}} = \lim\limits_{n \to \infty } \int\limits_2^{{n^2} + 1} {\frac{{\frac{{dt}}{2}}}{t}} = \frac{1}{2}\lim\limits_{n \to \infty } \int\limits_2^{{n^2} + 1} {\frac{{dt}}{t}} = \frac{1}{2}\lim\limits_{n \to \infty } \left. {\left( {\ln t} \right)} \right|_2^{{n^2} + 1} = \frac{1}{2}\lim\limits_{n \to \infty } \left[ {\ln \left( {{n^2} + 1} \right) - \ln 2} \right] = \infty .\]

Since the given integral diverges, the initial series \(\sum\limits_{n = 1}^\infty {{\frac{n}{{{n^2} + 1}}}} \) also diverges by the integral test.

Example 5.

Determine whether \[\sum\limits_{n = 1}^\infty {\frac{{\arctan n}}{{1 + {n^2}}}}\] converges or diverges.

Solution.

We easily can see that \(\arctan n \lt {\frac{\pi }{2}}.\) Hence, by comparison test,

\[\sum\limits_{n = 1}^\infty {\frac{{\arctan n}}{{1 + {n^2}}}} \lt \sum\limits_{n = 1}^\infty {\frac{{\frac{\pi }{2}}}{{1 + {n^2}}}} = \frac{\pi }{2}\sum\limits_{n = 1}^\infty {\frac{1}{{1 + {n^2}}}} .\]

Use the integral test to determine convergence of the series \(\sum\limits_{n = 1}^\infty {\frac{1}{{1 + {n^2}}}}:\)

\[ \int\limits_1^\infty {\frac{{dx}}{{1 + {x^2}}}} = \lim\limits_{n \to \infty } \int\limits_1^n {\frac{{dx}}{{1 + {x^2}}}} = \lim\limits_{n \to \infty } \left. {\left( {\arctan x} \right)} \right|_1^n = \lim\limits_{n \to \infty } \left( {\arctan n - \arctan 1} \right) = \frac{\pi }{2} - \frac{\pi }{4} = \frac{\pi }{4}.\]

Since the improper integral is convergent, then the original series is also convergent.

Example 6.

Investigate whether the series \[\sum\limits_{n = 0}^\infty {n{e^{ - n}}}\] converges or diverges.

Solution.

Using the integral test, calculate the improper integral

\[\int\limits_0^\infty {x{e^{ - x}}dx} = \lim\limits_{n \to \infty } \int\limits_0^n {x{e^{ - x}}dx} .\]

Apply integration by parts:

\[u = x,\;\;dv = {e^{ - x}}dx,\;\; \Rightarrow du = dx,\;\; v = \int {{e^{ - x}}dx} = - {e^{ - x}}.\]

Then we obtain

\[ \lim\limits_{n \to \infty } \int\limits_0^n {x{e^{ - x}}dx} = \lim\limits_{n \to \infty } \left[ {\left. {\left( { - x{e^{ - x}}} \right)} \right|_0^n - \int\limits_0^n {\left( { - {e^{ - x}}} \right)dx} } \right] = \lim\limits_{n \to \infty } \left[ {\left. {\left( { - x{e^{ - x}}} \right)} \right|_0^n + \int\limits_0^n {{e^{ - x}}dx} } \right] = \lim\limits_{n \to \infty } \left. {\left( { - x{e^{ - x}} - {e^{ - x}}} \right)} \right|_0^n = - \lim\limits_{n \to \infty } \left. {\left[ {{e^{ - x}}\left( {x + 1} \right)} \right]} \right|_0^n = - \lim\limits_{n \to \infty } \left[ {{e^{ - n}}\left( {n + 1} \right) - 1} \right] = 1 - \lim\limits_{n \to \infty } \frac{{n + 1}}{{{e^n}}}.\]

By L'Hopital's rule, the limit in the last expression is

\[\lim\limits_{n \to \infty } \frac{{n + 1}}{{{e^n}}} \sim \lim\limits_{x \to \infty } \frac{{x + 1}}{{{e^x}}} = \lim\limits_{x \to \infty } \frac{{{{\left( {x + 1} \right)}^\prime }}}{{{{\left( {{e^x}} \right)}^\prime }}} = \lim\limits_{x \to \infty } \frac{1}{{{e^x}}} = 0.\]

Hence, the improper integral is finite and equal to \(1.\) Therefore, the original series is convergent.

Page 1 Page 2