Calculus

Applications of the Derivative

Applications of Derivative Logo

Increasing and Decreasing Functions

Solved Problems

Example 15.

Find the intervals on which the function \[f\left( x \right) = x - \frac{4}{{{x^2}}}\] is increasing and decreasing.

Solution.

Sign chart for the first derivative of f(x)=x-4/x^2.
Figure 13.

First we take the derivative:

\[f^\prime\left( x \right) = \left( {x - \frac{4}{{{x^2}}}} \right)^\prime = 1 - 4 \cdot \left( { - 2} \right) \cdot {x^{ - 3}} = 1 + \frac{8}{{{x^3}}}.\]

Note that \(f^\prime\left( x \right) = 0\) at \(x = -2.\) The function and the derivative are undefined at \(x = 0,\) so there are two points that divide the real line (see figure above).

Using the interval method, we determine the sign of the derivative. We see that the derivative is positive everywhere on \(\left( { - \infty , - 2} \right]\) and \(\left( {0, +\infty} \right),\) and thus the function \(f\left( x \right)\) is increasing on \(\left( {-\infty,-2} \right] \cup \left( {0,+\infty} \right)\).

Similarly, we find that the function \(f\left( x \right)\) is decreasing on \(\left[ { - 2,0} \right).\)

Example 16.

Find the intervals of monotonicity of the function \[f\left( x \right) = \frac{{\sqrt x }}{{x - 1}}\;\left( {x \ge 0} \right).\]

Solution.

This function is defined and differentiable for all \(x \ge 0,\) except at the point \(x = 1\) where it has a discontinuity. Find the derivative \(f'\left( x \right)\) and determine the intervals where the derivative has a constant sign:

\[f'\left( x \right) = {\left( {\frac{{\sqrt x }}{{x - 1}}} \right)^\prime } = \frac{{{{\left( {\sqrt x } \right)}^\prime }\left( {x - 1} \right) - \sqrt x {{\left( {x - 1} \right)}^\prime }}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{\frac{1}{{2\sqrt x }} \cdot \left( {x - 1} \right) - \sqrt x \cdot 1}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{x - 1 - 2x}}{{2\sqrt x {{\left( {x - 1} \right)}^2}}} = - \frac{{x + 1}}{{2\sqrt x {{\left( {x - 1} \right)}^2}}}.\]

Using the interval method (Figure \(14\)), we see that the derivative is negative everywhere except at the points \(x = 0\) and \(x = 1\) where it does not exist.

Monotonicity intervals function2
Figure 14.
Graph of function2
Figure 15.

Thus, the function is strictly decreasing in the intervals \(\left( {0,1} \right)\) and \(\left( {1,\infty} \right).\) Its schematic view is shown in Figure \(15.\)

Example 17.

Find the intervals of monotonicity of the function \[f\left( x \right) = x\ln x.\]

Solution.

The function is defined and differentiable for \(x \gt 0.\) Its derivative is given by

\[f'\left( x \right) = \left( {x\ln x} \right)^\prime = x'\ln x + x{\left( {\ln x} \right)^\prime } = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1.\]

Equate the derivative to zero and find the intervals where it has a constant sign:

\[f'\left( x \right) = 0,\;\; \Rightarrow \ln x + 1 = 0,\;\; \Rightarrow \ln x = - 1,\;\; \Rightarrow \ln x = - \ln e,\;\; \Rightarrow \ln x = \ln \frac{1}{e},\;\; \Rightarrow x = \frac{1}{e}.\]

The solution of the strict inequality \(f'\left( x \right) \gt 0\) is the infinite interval \(x \in \left( {{\frac{1}{e}},\infty } \right)\) (Figure \(16\)), and the solution of the inequality \(f'\left( x \right) \lt 0\) is the finite interval \(x \in \left( {0, {\frac{1}{e}}} \right).\)

Monotonicity intervals function3
Figure 16.
Graph of function f(x)=xlnx
Figure 17.

Hence, by the sufficient criterion of monotonicity, the function is strictly increasing for \(x \in \left( {{\frac{1}{e}},\infty } \right)\) and strictly decreasing for \(x \in \left( {0, {\frac{1}{e}}} \right).\) Its view is schematically shown in Figure \(17.\)

Example 18.

Find the intervals of monotonicity of the function \[f\left( x \right) = {x^2}{e^{ - x}}.\]

Solution.

The function is defined and differentiable on the whole real line. Its derivative has the form:

\[f'\left( x \right) = {\left( {{x^2}{e^{ - x}}} \right)^\prime } = {\left( {{x^2}} \right)^\prime }{e^{ - x}} + {x^2}{\left( {{e^{ - x}}} \right)^\prime } = 2x{e^{ - x}} - {x^2}{e^{ - x}} = x{e^{ - x}}\left( {2 - x} \right).\]

The signs of the derivative can be easily determined by the interval method (Figure \(18\)). As it can be seen,

\[f'\left( x \right) \gt 0\;\;\text{for}\;\;x \in \left( {0,2} \right);\]
\[f'\left( x \right) \lt 0\;\;\text{for}\;\;x \in \left( { - \infty ,0} \right) \cup \left( {2,\infty } \right).\]
Monotonicity intervals function4
Figure 18.
Graph of function f(x)=x^2*e^(-x).
Figure 19.

According to the sufficient criterion of monotonicity, the function is strictly increasing in the interval \(\left( {0,2} \right)\) and, accordingly, is strictly decreasing in the intervals \(\left( {-\infty,0} \right)\) and \(\left( {2, \infty} \right).\) Its schematic view is shown in Figure \(19.\)

Example 19.

Find the intervals of monotonicity of the function \[f\left( x \right) = \sqrt {x - {x^2}}.\]

Solution.

The function is defined on the following interval:

\[x - {x^2} \ge 0,\;\; \Rightarrow x\left( {1 - x} \right) \ge 0,\;\; \Rightarrow x \in \left[ {0,1} \right].\]

The derivative of this function is given by

\[f'\left( x \right) = \left( {\sqrt {x - {x^2}} } \right)^\prime = \frac{1}{{2\sqrt {x - {x^2}} }} \cdot {\left( {x - {x^2}} \right)^\prime } = \frac{{1 - 2x}}{{2\sqrt {x - {x^2}} }}.\]

Consequently,

\[f'\left( x \right) = 0,\;\; \Rightarrow \frac{{1 - 2x}}{{2\sqrt {x - {x^2}} }} = 0,\;\; \Rightarrow x = \frac{1}{2}.\]

Examine the sign of the derivative (Figure \(20\)).

Monotonicity intervals function5
Figure 20.
Graph of function f(x)=sqrt(x-x^2)).
Figure 21.

Based on the sufficient condition for monotonicity, we conclude that the function is increasing for \(x \in \left( {0,{\frac{1}{2}}} \right)\) and decreasing for \(x \in \left( {{\frac{1}{2}},1} \right).\) The graph of the function is a half-circle centered at the point \(\left( {{\frac{1}{2}},0} \right)\) and radius \({\frac{1}{2}}\) (Figure \(21\)).

Example 20.

Find the intervals on which the function \[f\left( x \right) = {x^3} + \frac{1}{{{x^3}}}\] is strictly decreasing.

Solution.

The function is defined over all \(x\) except \(x = 0\) where it has a discontinuity.

Take the derivative:

\[f^\prime\left( x \right) = \left( {{x^3} + \frac{1}{{{x^3}}}} \right)^\prime = \left( {{x^3} + {x^{ - 3}}} \right)^\prime = 3{x^2} - 3{x^{ - 4}} = 3{x^2} - \frac{3}{{{x^4}}} = \frac{{3{x^6} - 3}}{{{x^4}}} = \frac{{3\left( {{x^6} - 1} \right)}}{{{x^4}}}.\]

Determine where the derivative is negative. Notice that the denominator is always positive if \(x \ne 0.\) Then we can write

\[f^\prime\left( x \right) \lt 0,\;\; \Rightarrow \frac{{3\left( {{x^6} - 1} \right)}}{{{x^4}}} \lt 0,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {3\left( {{x^6} - 1} \right) \lt 0}\\ {{x^4} \ne 0} \end{array}} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {{x^6} \lt 1}\\ {x \ne 0} \end{array}} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} { - 1 \lt x \lt 1}\\ {x \ne 0} \end{array}} \right.,\;\; \Rightarrow x \in \left( { - 1,0} \right) \cup \left( {0,1} \right).\]

So the function is strictly decreasing on \(\left( { - 1,0} \right)\) and \(\left( { 0,1} \right).\)

Example 21.

Find the intervals of monotonicity of the function \[f\left( x \right) = {\frac{{1 - \sin x}}{{\cos x}}}.\]

Solution.

This function is defined and differentiable for all \(x \in \mathbb{R},\) except for the values in which \(\cos x\) is equal to zero, that is except for \(x = {\frac{\pi }{2}} + \pi n,\) \(n \in \mathbb{Z}.\) Find the derivative \(f'\left( x \right):\)

\[f'\left( x \right) = \left( {\frac{{1 - \sin x}}{{\cos x}}} \right)^\prime = \frac{{\sin x - 1}}{{{{\cos }^2}x}}.\]

Solve the inequality \(f'\left( x \right) \le 0:\)

\[ f'\left( x \right) \le 0,\;\; \Rightarrow \frac{{\sin x - 1}}{{{{\cos }^2}x}} \le 0,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {\sin x - 1 \le 0}\\ {{{\cos }^2}x \ne 0} \end{array}} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {\sin x \le 1}\\ {{{\cos }^2}x \ne 0} \end{array}} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {x \in \mathbb{R}}\\ {x \ne \frac{\pi }{2} + \pi n,\;n \in \mathbb{Z}} \end{array}} \right..\]

Thus, the given function is decreasing on the whole set of real numbers, except at the points \(x = {\frac{\pi }{2}} + \pi n,\) \(n \in \mathbb{Z},\) where it is not defined.

Example 22.

Find the intervals on which the function \[f\left( x \right) = \frac{x}{{\ln x}}\] is increasing and decreasing.

Solution.

Sign chart for the derivative of f(x)=x/ln(x).
Figure 22.

The function is defined for all \(x\) such that

\[\left\{ \begin{array}{l} x \gt 0\\ \ln x \ne 0 \end{array} \right.,\;\; \Rightarrow \left\{ \begin{array}{l} x \gt 0\\ x \ne 1 \end{array} \right.,\;\; \Rightarrow x \in \left( {0,1} \right) \cup \left( {1,\infty } \right).\]

Take the derivative using the quotient rule:

\[f^\prime\left( x \right) = \left( {\frac{x}{{\ln x}}} \right)^\prime = \frac{{\left( x \right)^\prime \cdot \ln x - x \cdot \left( {\ln x} \right)^\prime}}{{{{\ln }^2}x}} = \frac{{\ln x - x \cdot \frac{1}{x}}}{{{{\ln }^2}x}} = \frac{{\ln x - 1}}{{{{\ln }^2}x}}.\]

Locate the critical values of the function:

\[f^\prime\left( c \right) = 0,\;\; \Rightarrow \frac{{\ln c - 1}}{{{{\ln }^2}c}} = 0,\;\; \Rightarrow \ln c = 1,\;\; \Rightarrow c = e.\]

Determine the sign of the derivative in the open intervals we identified (see the sign chart above.)

The function is increasing if \(f^\prime\left( x \right) \ge 0\) and decreasing if \(f^\prime\left( x \right) \le 0.\) Therefore we can write the following answer:

\[\text{increasing:}\,\left[ {e,\infty } \right);\,\text{decreasing:}\,\left( {0,1} \right) \cup \left( {1,e} \right].\]

Example 23.

Find the intervals on which the function \[f\left( x \right) = \frac{{{x^2} + 1}}{x}\] is increasing and decreasing.

Solution.

Sign chart for the derivative of f(x)=(x^2+1)/x.
Figure 23.

The function is defined for all \(x\) except \(x = 0.\)

The derivative of the function is given by

\[f^\prime\left( x \right) = \left( {\frac{{{x^2} + 1}}{x}} \right)^\prime = \frac{{\left( {{x^2} + 1} \right)^\prime \cdot x - \left( {{x^2} + 1} \right) \cdot x^\prime}}{{{x^2}}} = \frac{{2x \cdot x - \left( {{x^2} + 1} \right) \cdot 1}}{{{x^2}}} = \frac{{2{x^2} - {x^2} - 1}}{{{x^2}}} = \frac{{{x^2} - 1}}{{{x^2}}}.\]

Determine the intervals where the derivative is positive and negative. Solve the inequality:

\[f^\prime\left( x \right) \ge 0,\;\; \Rightarrow \frac{{{x^2} - 1}}{{{x^2}}} \ge 0,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {{x^2} - 1 \ge 0}\\ {{x^2} \ne 0} \end{array}} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {\left( {x - 1} \right)\left( {x + 1} \right) \ge 0}\\ {x \ne 0} \end{array}} \right..\]

Using the interval method we find that

\[f^\prime\left( x \right) \ge 0\;\text{for}\;x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right),\]
\[f^\prime\left( x \right) \le 0\;\text{for}\;x \in \left[ { - 1, 0} \right) \cup \left( {0,1} \right].\]

Consequently, we get the following answer:

\[\text{increasing:}\;x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right),\]
\[\text{decreasing:}\;x \in \left[ { - 1, 0} \right) \cup \left( {0,1} \right].\]

Example 24.

Find all values of the parameter \(a,\) for which the function \[f\left( x \right) = {x^3} - 6{x^2} + ax\] is strictly increasing in the whole domain.

Solution.

The function is defined and differentiable on the whole real line \(x \in \mathbb{R}.\) Its derivative has the following form:

\[f'\left( x \right) = \left( {{x^3} - 6{x^2} + ax} \right)^\prime = 3{x^2} - 12x + a.\]

We take a perfect square in this expression:

\[f'\left( x \right) = 3{x^2} - 12x + a = 3{x^2} - 12x + 12 - 12 + a = 3\left( {{x^2} - 4x + 4} \right) + a - 12 = 3{\left( {x - 2} \right)^2} + a - 12.\]

The function is strictly increasing when \(f'\left( x \right) \ge 0.\) Consequently, the condition of strict increasing for all \(x \in \mathbb{R}\) is written as

\[f'\left( x \right) = 3{\left( {x - 2} \right)^2} + a - 12 \gt 0.\]

Obviously, the derivative takes the minimum value when \(x = 2.\) At this point it is equal:

\[{f'_{\min }} = a - 12.\]

From this we find the values of the parameter \(a,\) for which the function is strictly increasing:

\[a - 12 \gt 0\;\;\text{or}\;\;a \gt 12.\]

Example 25.

Find all values of the parameter \(a,\) for which the equation \[{x^3} - 6{x^2} + 9x + a = 0\] has three distinct real roots.

Solution.

The cubic function is defined and differentiable on the whole real line. Its derivative is given by

\[f'\left( x \right) = \left( {{x^3} - 6{x^2} + 9x + a} \right)^\prime = 3{x^2} - 12x + 9.\]

Equating the derivative to zero, we determine the intervals of monotonicity of the function (Figure \(24\)):

\[f'\left( x \right) = 0,\;\; \Rightarrow 3{x^2} - 12x + 9 = 0,\;\; \Rightarrow {x^2} - 4x + 3 = 0,\;\; \Rightarrow {x_1} = 1,\;{x_2} = 3.\]

Thus, at the transition (from left to right) through the point \(x = 1\), the function changes from increasing to decreasing, i.e. \(x = 1\) is the maximum point of the function. Similarly, \(x = 3\) is the minimum point of the function.

Monotonicity intervals function6
Figure 24.
Graph of function f(x)=x^3-6x^2+9x+a.
Figure 25.

The cubic equation will have three distinct real roots in the case shown in Figure \(25.\) The maximum of the function must take a positive value, and the minimum must take a negative one. Thus, we arrive at the following condition:

\[\left\{ \begin{array}{l} y\left( 1 \right) \gt 0\\ y\left( 3 \right) \lt 0 \end{array} \right..\]

Compute the values of the function \(f\left( x \right)\) at these points:

\[y\left( 1 \right) = {1^3} - 6 \cdot {1^2} + 9 \cdot 1 + a = a + 4,\]
\[y\left( 3 \right) = {3^3} - 6 \cdot {3^2} + 9 \cdot 3 + a = a.\]

Now it is easy to find the range of values of the parameter \(a:\)

\[ \left\{ \begin{array}{l} y\left( 1 \right) \gt 0\\ y\left( 3 \right) \lt 0 \end{array} \right.,\;\; \Rightarrow \left\{ \begin{array}{l} a + 4 \gt 0\\ a \lt 0 \end{array} \right.,\;\; \Rightarrow \left\{ \begin{array}{l} a \gt - 4\\ a \lt 0 \end{array} \right.,\;\; \Rightarrow a \in \left( { - 4,0} \right).\]

Example 26.

Determine the number of roots of the cubic equation \[{x^3} - 12x + a = 0\] depending on the parameter \(a.\)

Solution.

The function in the left-hand side is defined and differentiable on the whole real line. The derivative of the function is given by

\[f'\left( x \right) = \left( {{x^3} - 12x + a} \right)^\prime = 3{x^2} - 12.\]

Calculate the roots of the derivative:

\[f'\left( x \right) = 0,\;\; \Rightarrow 3{x^2} - 12 = 0,\;\; \Rightarrow 3\left( {{x^2} - 4} \right) = 0,\;\; \Rightarrow {x_1} = - 2,\;{x_2} = 2.\]

In the transition from left to right through the point \({x_1} = - 2\), the sign of the derivative changes from "\(+\)" to "\(-\)" (Figure \(26\)). Therefore the point\({x_1}\) is the maximum point. Similarly, we state that the point \({x_2} = 2\) is the minimum point.

Write down the values of the function at these points:

\[{f_{\max }} = f\left( { - 2} \right) = {\left( { - 2} \right)^3} - 12 \cdot \left( { - 2} \right) + a = - 8 + 24 + a = a + 16,\]
\[{f_{\min }} = f\left( 2 \right) = {2^3} - 12 \cdot 2 + a = 8 - 24 + a = a - 16.\]

The equation has a single root if the points of maximum and minimum are on the same (upper or lower) half-plane, as shown in Figure \(27.\) Such configuration is described by the condition \({f_{\max }} \cdot {f_{\min }} \gt 0.\) Solving this inequality, we obtain:

\[{f_{\max }} \cdot {f_{\min }} \gt 0,\;\; \Rightarrow \left( {a + 16} \right)\left( {a - 16} \right) \gt 0,\;\; \Rightarrow {a^2} - {16^2} \gt 0,\;\; \Rightarrow {a^2} \gt {16^2},\;\; \Rightarrow \left| a \right| \gt 16.\]
Monotonicity intervals function7
Figure 26.
Cubic function with one root
Figure 27.
Cubic function with two roots
Figure 28.
Cubic function with three roots
Figure 29.

Now we consider the case when the equation has \(2\) roots. A possible location of the graph of the function for this case is given in Figure \(28.\) Since one of the roots coincides with the point of maximum or minimum, then the corresponding condition is written as

\[{f_{\max }} \cdot {f_{\min }} = 0,\;\; \Rightarrow \left( {a + 16} \right)\left( {a - 16} \right) = 0,\;\; \Rightarrow a = \pm 16,\;\; \Rightarrow \left| a \right| = 16.\]

Finally, the equation has three distinct roots, if the maximum and minimum points lie in the different half-planes (Figure \(29\)). Hence, here we have

\[{f_{\max }} \cdot {f_{\min }} \lt 0,\;\; \Rightarrow \left( {a + 16} \right)\left( {a - 16} \right) \lt 0,\;\; \Rightarrow {a^2} - {16^2} \lt 0,\;\; \Rightarrow {a^2} \lt {16^2},\;\; \Rightarrow \left| a \right| \lt 16.\]

Collecting together these results we can write the final answer:

The given cubic equation has one root when \(\left| a \right| \gt 16,\) two roots if \(\left| a \right| = 16\), and three roots when \(\left| a \right| \lt 16.\)

Page 1 Page 2 Page 3