Calculus

Applications of the Derivative

Applications of Derivative Logo

Increasing and Decreasing Functions

Solved Problems

Example 1.

Indicate the intervals where the function \(y = f\left( x \right)\) is strictly increasing (Figure \(7\)).

Solution.

A function with increasing and decreasing intervals.
Figure 7.

A function is strictly increasing when the \(y-\)value increases as the \(x-\)value increases. One can see that the given function is strictly increasing on the intervals \(\left( { - 5, - 1} \right)\) and \(\left( {3,6} \right).\)

Example 2.

Indicate the intervals where the function \(y = f\left( x \right)\) is decreasing (Figure \(8\)).

Solution.

Example of increasing and decreasing function
Figure 8.

According to the definition, a function is decreasing on an interval if \(f\left( {{x_1}} \right) \ge f\left( {{x_2}} \right)\) for any two points \({x_1} \le {x_2}.\)

Thus, a decreasing interval may also contain points where the function has a constant value. (This is not true for a strictly decreasing function.)

In our case, we see that the function is decreasing on the interval \(\left( { - 2,6} \right).\)

Example 3.

Using the definition of monotonicity prove that the function \[f\left( x \right) = {x^2} + 1\] is strictly increasing for \(x \ge 0.\)

Solution.

We take two arbitrary points \({x_1}\) and \({x_2}\) such that

\[0 \le {x_1} \lt {x_2}.\]

Consider the difference between the values of the function at these points:

\[f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \left( {x_2^2 + 1} \right) - \left( {x_1^2 + 1} \right) = x_2^2 - x_1^2 = \left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right).\]

It is obvious that in the last expression \({{x_2} - {x_1}} \gt 0\) and \({{x_2} + {x_1}} \gt 0\) (since, by assumption, only non-negative values of \(x\) are considered). As a result, we have

\[\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right) \gt 0,\;\; \Rightarrow f\left( {{x_2}} \right) - f\left( {{x_1}} \right) \gt 0.\]

This means by definition that the function \(f\left( x \right) = {x^2} + 1\) is strictly increasing on the given interval.

Example 4.

Using the definition of monotonicity prove that the cubic function \[f\left( x \right) = {x^3}\] is strictly increasing for all \(x \in \mathbb{R}.\)

Solution.

We choose two arbitrary points \({{x_1}}\) and \({{x_2}}\) such that \({x_1} \lt {x_2}.\) Consider the difference:

\[f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = x_2^3 - x_1^3.\]

Factoring it as the difference of cubes, we obtain:

\[x_2^3 - x_1^3 = \left( {{x_2} - {x_1}} \right)\left( {x_2^2 + {x_1}{x_2} + x_1^2} \right).\]

In the second bracket we can get a perfect square:

\[x_2^2 + {x_1}{x_2} + x_1^2 = x_1^2 + 2 \cdot {x_1} \cdot \frac{{{x_2}}}{2} + \frac{{x_2^2}}{4} + \frac{{3x_2^2}}{4} = {\left( {{x_1} + \frac{{{x_2}}}{2}} \right)^2} + \frac{{3x_2^2}}{4} \gt 0.\]

Hence it is clear that the quadratic expression is always positive (it is equal to zero only if \({x_1} = {x_2} = 0,\) which contradicts the condition \({x_1} \lt {x_2}.\))

Thus, \(f\left( {{x_2}} \right) - f\left( {{x_1}} \right) \gt 0,\) if \({x_2} - {x_1} \gt 0,\) i.e. the function \(f\left( x \right) = {x^3}\) is strictly increasing.

Example 5.

Using the properties of monotonic functions prove that the function \[f\left( x \right) = {x^4} + 3{x^2}\] is strictly increasing for \(x \ge 0.\)

Solution.

This function is the sum of the functions \({x^4}\) and \(3{x^2}.\)

The first function \({x^4}\) can be considered as the product of two identical functions \({x^2}\). Example \(1\) shows that the quadratic function \({x^2}\) is strictly increasing for \(x \ge 0.\) Hence, the function \({x^4}\) is also strictly increasing for \(x \ge 0\) by the property \(4.\)

The second term \(3{x^2}\) is the triple sum of the functions \({x^2}\), so this term is also strictly increasing according to the property \(1.\)

Hence, the original function \(f\left( x \right) = {x^4} + 3{x^2}\) is the sum of two strictly increasing functions and consequently is also strictly increasing when \(x \ge 0.\)

Example 6.

Using the definition of monotonicity prove that the function \[f\left( x \right) = \cos x\] is strictly decreasing on the interval \(\left[ {0,\pi } \right].\)

Solution.

Let the points \({x_1}\), \({x_2}\) lie in the given interval \(\left[ {0,\pi } \right]\) and the following condition is satisfied: \({x_1} \lt {x_2}.\) Consider the difference:

\[f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \cos {x_2} - \cos {x_1}.\]

Convert it by the cosine difference identity:

\[\cos {x_2} - \cos {x_1} = - 2\sin \frac{{{x_2} + {x_1}}}{2}\sin \frac{{{x_2} - {x_1}}}{2}.\]

Since \({x_1},{x_2} \in \left[ {0,\pi } \right],\) then the half sum is bounded by the double inequality

\[0 \lt \frac{{{x_2} + {x_1}}}{2} \lt \pi .\]

Similarly, the half difference (assuming that \({x_2} \lt {x_1}\)) satisfies the inequality

\[0 \lt \frac{{{x_2} - {x_1}}}{2} \lt \frac{\pi }{2}.\]

For these ranges of angles, the sine is always positive. Therefore

\[\cos {x_2} - \cos {x_1} - 2\sin \frac{{{x_2} + {x_1}}}{2}\sin \frac{{{x_2} - {x_1}}}{2} \lt 0.\]

Thus, the following relationship holds:

\[{x_2} \gt {x_1} \Rightarrow f\left( {{x_2}} \right) \lt f\left( {{x_1}} \right),\]

that is the cosine function is strictly decreasing on the interval \(\left[ {0,\pi } \right].\)

Example 7.

Show that the function \[f\left( x \right) = {x^3} - 3{x^2} + 6x - 1\] is strictly increasing on \(\mathbb{R}.\)

Solution.

Find the derivative:

\[f^\prime\left( x \right) = \left( {{x^3} - 3{x^2} + 6x - 1} \right)^\prime = {3}{x^2} - 6x + 6.\]

Notice that the discriminant of the quadratic function is negative:

\[D = {b^2} - 4ac = {\left( { - 6} \right)^2} - 4 \cdot 3 \cdot 6 = 36 - 72 = - 36 \lt 0.\]

Therefore, the quadratic function has no zeros and has the same sign over the interval \(\left( { - \infty ,\infty } \right).\)

We choose \(x = 0\) to evaluate the sign of the derivative:

\[f^\prime\left( 0 \right) = 3 \cdot {0^2} - 6 \cdot 0 + 6 = 6 \gt 0.\]

Hence, the function is strictly increasing on \(\mathbb{R}.\)

Example 8.

For what values of \(x\) is the function \[f\left( x \right) = {x^4} - 2{x^2}\] strictly increasing?

Solution.

Sign chart for the first derivative of f(x)=x^4-2x^2.
Figure 9.

Calculate the derivative:

\[f^\prime\left( x \right) = \left( {{x^4} - 2{x^2}} \right)^\prime = 4{x^3} - 4x = 4x\left( {{x^2} - 1} \right) = 4x\left( {x - 1} \right)\left( {x + 1} \right).\]

The derivative is zero at the points \({x_1} = - 1,\) \({x_1} = 0,\) \({x_3} = 1.\)

Using the interval method we find the intervals where the derivative has a constant sign (see the sign chart above).

Hence, the function is increasing on \(\left( { - 1,0} \right)\) and \(\left( {1, + \infty } \right).\)

Example 9.

What is the length \(L\) of the interval on which the function \[f\left( x \right) = {x^3} - 6{x^2} - 15x + 8\] is decreasing?

Solution.

We take the derivative and find the critical points:

\[f^\prime\left( x \right) = \left( {{x^3} - 6{x^2} - 15x + 8} \right)^\prime = 3{x^2} - 12x - 15.\]
\[f^\prime\left( x \right) = 0,\;\; \Rightarrow 3{x^2} - 12x - 15 = 0,\;\; \Rightarrow {x^2} - 4x - 5 = 0,\;\; \Rightarrow \left( {x + 1} \right)\left( {x - 5} \right) = 0,\;\; \Rightarrow {x_1} = - 1,{x_2} = 5.\]

Substituting the test value \(x = 0,\) we see that the derivative is negative for \(x \in \left( { - 1,5} \right).\) Hence, the function is decreasing on \(\left[ { - 1,5} \right].\) The length of the interval is \(L = 6.\)

Example 10.

What is the length \(L\) of the interval on which the function \[f\left( x \right) = {x^4}{e^{ - x}}\] is increasing?

Solution.

Sign chart for the first derivative of f(x)=x^4*exp(-x).
Figure 10.

Find the derivative using the product rule:

\[f^\prime\left( x \right) = \left( {{x^4}{e^{ - x}}} \right)^\prime = \left( {{x^4}} \right)^\prime \cdot {e^{ - x}} + {x^4} \cdot \left( {{e^{ - x}}} \right)^\prime = 4{x^3}{e^{ - x}} - {x^4}{e^{ - x}} = {x^3}{e^{ - x}}\left( {4 - x} \right).\]

Determine the sign of the derivative by the interval method. We see in the figure above that the derivative is positive for \(x \in \left( {0,4} \right),\) so the length of the interval on which the function is increasing is \(L = 4.\)

Example 11.

Find the intervals of monotonicity of the function \[f\left( x \right) = {x^3} - 12x + 5.\]

Solution.

The derivative of this function is given by

\[f'\left( x \right) = \left( {{x^3} - 12x + 5} \right)^\prime = 3{x^2} - 12 = 3\left( {{x^2} - 4} \right).\]

Determine the intervals where the derivative is positive and negative. Solve the following inequality:

\[f'\left( x \right) \gt 0,\;\; \Rightarrow 3\left( {{x^2} - 4} \right) \gt 0,\;\; \Rightarrow {x^2} - 4 \gt 0,\;\; \Rightarrow \left( {x - 2} \right)\left( {x + 2} \right) \gt 0.\]

Using the interval method we find that

\[f'\left( x \right) \gt 0\;\;\text{for}\;\;x \in \left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right),\]
\[f'\left( x \right) \lt 0\;\;\text{for}\;\;x \in \left( { - 2,2} \right).\]

Consequently, the function \(f\left( x \right) = {x^3} - 12x + 5\) is increasing (in the strict sense) in the intervals \(\left( { - \infty , - 2} \right)\) and \(\left( {2,\infty } \right)\) and, accordingly, is strictly decreasing in the interval \(\left( { - 2,2} \right).\)

Example 12.

Find the intervals of monotonicity of the function \[f\left( x \right) = x + \sin x.\]

Solution.

This function is defined and differentiable on the real line. Consider the inequality \(f'\left( x \right) \gt 0:\)

\[f'\left( x \right) = \left( {x + \sin x} \right)^\prime = 1 + \cos x,\]
\[f'\left( x \right) \gt 0,\;\; \Rightarrow 1 + \cos x \gt 0,\;\; \Rightarrow \cos x \gt - 1.\]

This inequality holds for all \(x\) except at the points where \(\cos x = -1,\) that is

\[\cos x \ne - 1,\;\;\Rightarrow x \ne \pi + 2\pi n,\;n \in \mathbb{Z}.\]

However, if we consider the non-strict inequality \(f'\left( x \right) \ge 0,\) we obtain:

\[f'\left( x \right) \ge 0,\;\; \Rightarrow 1 + \cos x \ge 0,\;\; \Rightarrow \cos x \ge - 1,\;\; \Rightarrow x \in \mathbb{R}.\]

Thus, the function \(f\left( x \right) = x + \sin x\) is increasing (but not in the strict sense, i.e. the function is non-decreasing) for any \(x \in \mathbb{R}.\)

To check the result, we also consider the inequality \(f'\left( x \right) \lt 0:\)

\[f'\left( x \right) \lt 0,\;\; \Rightarrow 1 + \cos x \lt 0,\;\; \Rightarrow \cos x \lt - 1,\;\; \Rightarrow x \in \emptyset .\]

This inequality has no solutions.

Example 13.

Find the intervals of monotonicity of the function \[f\left( x \right) = \frac{x}{{{x^2} + 1}}.\]

Solution.

The function is defined and differentiable on the whole set of real numbers. Calculate its derivative:

\[f'\left( x \right) = {\left( {\frac{x}{{{x^2} + 1}}} \right)^\prime } = \frac{{x'\left( {{x^2} + 1} \right) - x\left( {{x^2} + 1} \right)'}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{1 \cdot \left( {{x^2} + 1} \right) - x \cdot 2x}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}.\]

Determine the intervals where the derivative has a constant sign. Equate the derivative to zero and find the roots of the equation:

\[ f'\left( x \right) = 0,\;\; \Rightarrow \frac{{1 - {x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} = 0,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {1 - {x^2} = 0}\\ {{{\left( {{x^2} + 1} \right)}^2} \ne 0} \end{array}} \right.,\;\; \Rightarrow 1 - {x^2} = 0,\;\; \Rightarrow \left( {1 - x} \right)\left( {1 + x} \right) = 0.\]

Determine the intervals where the derivative has a constant sign. Equate the derivative to zero and find the roots of the equation:

Monotonicity intervals function1
Figure 11.
Graph of function1
Figure 12.

Thus, the function is decreasing (in the strict sense) in the intervals \(\left( { - \infty , - 1} \right)\) and \(\left( {1, \infty} \right)\) and increasing in the interval \(\left( {-1, 1} \right).\) Given that the root of the function is of the form \(x = 0,\) we can schematically draw its graph (Figure \(12\)).

Example 14.

Find the intervals on which the function \[y = {x^x}\,\left( {x \gt 0} \right)\] is increasing and decreasing.

Solution.

First we take the derivative of the function using the logarithmic differentiation:

\[y = {x^x},\;\; \Rightarrow \ln y = \ln {x^x},\;\; \Rightarrow \ln y = x\ln x,\;\; \Rightarrow \left( {\ln y} \right)^\prime = \left( {x\ln x} \right)^\prime,\;\; \Rightarrow \frac{{y^\prime}}{y} = 1 \cdot \ln x + x \cdot \frac{1}{x},\;\; \Rightarrow \frac{{y^\prime}}{y} = \ln x + 1,\;\; \Rightarrow y^\prime = y\left( {\ln x + 1} \right),\;\; \Rightarrow y^\prime = {x^x}\left( {\ln x + 1} \right).\]

The function \({x^x}\) is positive at \(x \gt 0,\) so the sign of the derivative is determined by the term \({\ln x + 1}.\)

Calculate the critical point:

\[y^\prime = 0,\;\; \Rightarrow {x^x}\left( {\ln x + 1} \right) = 0,\;\; \Rightarrow \ln x + 1 = 0,\;\; \Rightarrow \ln x = - 1,\;\; \Rightarrow x = {e^{ - 1}} = \frac{1}{e}.\]

Hence, the function is decreasing on \(\left( {0,\frac{1}{e}} \right]\) and increasing on \(\left[ {\frac{1}{e}, + \infty } \right).\)

Page 1 Page 2 Page 3