Differential Equations

Higher Order Equations

Nth Order Diff Equations Logo

Differential Operators

Solved Problems

Example 1.

Check whether the commutative law of multiplication is valid for the operators \[L = {D^2} + 1, M = 2D +3.\]

Solution.

Calculate \(LMy:\)

\[My = \left( {2D + 3} \right)y = 2y' + 3y.\]

We obtain the following differential expression:

\[LMy = L\left( {My} \right) = \left( {{D^2} + 1} \right)\left( {2y' + 3y} \right) = 2y^{\prime\prime\prime} + 3y^{\prime\prime} + 2y' + 3y = \left( {2{D^3} + 3{D^2} + 2D + 3} \right)y.\]

Now we compute \(MLy:\)

\[Ly = \left( {{D^2} + 1} \right)y = y^{\prime\prime} + y.\]

Hence,

\[MLy = M\left( {Ly} \right) = \left( {2D + 3} \right)\left( {y^{\prime\prime} + y} \right) = 2y^{\prime\prime\prime} + 3y^{\prime\prime} + 2y' + 3y = \left( {2{D^3} + 3{D^2} + 2D + 3} \right)y.\]

We see that in this case, the commutative law of multiplication is valid (this is true for any operator \(L\left( D \right)\) with constant coefficients).

Example 2.

Check whether the commutative law of multiplication is valid for the operators \[L = xD - 1, M = {D^2} + {x^2}.\]

Solution.

We first calculate the differential expression \(LMy:\)

\[My = \left( {{D^2} + {x^2}} \right)y = y^{\prime\prime} + {x^2}y,\]
\[LMy = L\left( {My} \right) = \left( {xD - 1} \right)\left( {y^{\prime\prime} + {x^2}y} \right) = xy^{\prime\prime\prime} - y^{\prime\prime} + x\left( {2xy + {x^2}y'} \right) - {x^2}y = xy^{\prime\prime\prime} - y^{\prime\prime} + 2{x^2}y + {x^3}y' - {x^2}y = xy^{\prime\prime\prime} - y^{\prime\prime} + {x^3}y' + {x^2}y = \left( {x{D^3} - {D^2} + {x^3}D + {x^2}} \right)y.\]

Similarly, we calculate \(MLy\) and compare the results

\[Ly = \left( {xD - 1} \right)y = xy' - y,\]
\[MLy = M\left( {Ly} \right) = \left( {{D^2} + {x^2}} \right)\left( {xy' - y} \right) = D\left( {y' + xy^{\prime\prime}} \right) + {x^3}y' - y^{\prime\prime} - {x^2}y = y^{\prime\prime} + \cancel{y^{\prime\prime}} + xy^{\prime\prime\prime} - \cancel{y^{\prime\prime}} + {x^3}y' - {x^2}y = xy^{\prime\prime\prime} + y^{\prime\prime} + {x^3}y' - {x^2}y = \left( {x{D^3} + {D^2} + {x^3}D - {x^2}} \right)y.\]

Thus, we get different expressions for a different order of the operators \(L\) and \(M.\) This property is typical for differential operators with variable coefficients.

Example 3.

Find a particular solution of the differential equation \[y^{\prime\prime\prime} + 3y = {e^{2x}}\] using the operator method.

Solution.

Consider the action of an arbitrary operator \(L\left( D \right)\) with constant coefficients to the exponential function \({e^{kx}}:\)

\[L\left( D \right){e^{kx}} = \left( {{k^n} + {a_1}{k^{n - 1}} + \cdots + {a_n}} \right){e^{kx}} = L\left( k \right){e^{kx}}.\]

It follows that

\[L\left( D \right)\left[ {\frac{{{e^{kx}}}}{{L\left( k \right)}}} \right] = {e^{kx}}.\]

Since the differential equation is written in operator form as

\[L\left( D \right)y = {e^{kx}},\]

then one of the solutions of this equation is the function

\[{y_1} = \frac{{{e^{kx}}}}{{L\left( k \right)}}.\]

In this example, the operator is

\[L\left( D \right) = {D^3} + 3.\]

Hence, the particular solution of the differential equation is given by

\[{y_1} = \frac{{{e^{kx}}}}{{L\left( k \right)}} = \frac{{{e^{kx}}}}{{{k^3} + 3}} = \frac{{{e^{2x}}}}{{{2^3} + 3}} = \frac{{{e^{2x}}}}{{11}}.\]

Example 4.

Find a particular solution of the differential equation \[{y^{IV}} - y^{\prime\prime} + y = 2\sin x\] using the operator method.

Solution.

The equation can be written as

\[L\left( D \right)y = 2\sin x\;\; \text{or}\;\;\left( {{D^4} - {D^2} + 1} \right)y = 2\sin x.\]

This differential polynomial contains only even powers of \(D.\) You may notice that the operator \({D^2}\) acting on the function \(A\sin kx\) produces

\[{D^2}y = {D^2}\left( {A\sin kx} \right) = - {k^2}A\sin kx = - {k^2}y.\]

It is clear that for an arbitrary differential polynomial \(L\left( {{D^2}} \right)\) with constant coefficients the following formula holds:

\[L\left( {{D^2}} \right)y = L\left( {{D^2}} \right)\left( {A\sin kx} \right) = L\left( { - {k^2}} \right)A\sin kx = L\left( { - {k^2}} \right)y.\]

Then the particular solution is given by

\[{y_1} = \frac{{A\sin kx}}{{L\left( { - {k^2}} \right)}}.\]

In our case, the right-hand side of the equation is equal to \(2\sin x,\) and the differential operator can be written as

\[L\left( {{D^2}} \right) = {\left( {{D^2}} \right)^2} - {D^2} + 1.\]

As a result, we obtain:

\[{y_1} = \frac{{A\sin kx}}{{L\left( { - {k^2}} \right)}} = \frac{{A\sin kx}}{{{{\left( { - {k^2}} \right)}^2} - \left( { - {k^2}} \right) + 1}} = \frac{{2\sin x}}{{{{\left( { - {1^2}} \right)}^2} - \left( { - {1^2}} \right) + 1}} = \frac{{2\sin x}}{3}.\]
Page 1 Page 2