Calculus

Limits and Continuity of Functions

Limits and Continuity Logo

Definition of Limit of a Function

Solved Problems

Example 3.

Using the \(\varepsilon-\delta-\) definition of limit, find the number \(\delta\) that corresponds to the \(\varepsilon\) given with the following limit: \[\lim\limits_{x \to 7} \sqrt {x + 2} = 3,\,\varepsilon = 0.2\]

Solution.

According to the definition of limit,

\[\left| {f\left( x \right) - 3} \right| \lt \varepsilon ,\;\text{if}\;\; \left| {x - 7} \right| \lt \delta .\]

Substituting \({f\left( x \right)}\) and \(\varepsilon\), we get

\[\left| {\sqrt {x + 2} - 3} \right| \lt 0.2,\;\; \Rightarrow - 0.2 \lt \sqrt {x + 2} - 3 \lt 0.2, \;\; \Rightarrow 3 - 0.2 \lt \sqrt {x + 2} \lt 3 + 0.2,\;\;\Rightarrow 2.8 \lt \sqrt {x + 2} \lt 3.2\]

Square all three parts of the inequality.

\[7.84 \lt x + 2 \lt 10.24,\;\; \Rightarrow 5.84 \lt x \lt 8.24,\;\; \Rightarrow - 1.16 \lt x - 7 \lt 1.24,\]

which is equivalent to the inequality

\[\left| {x - 7} \right| \lt 1.16\]

Thus, we can choose the number \(\delta = 1.16\) to satisfy the original inequality for \(\varepsilon.\)

Example 4.

Prove that \[\lim\limits_{x \to \infty } {\frac{{x + 1}}{x}} = 1.\]

Solution.

We can apply the similar techniques to limits at \(x \to \infty .\) Assume \(\varepsilon \gt 0.\) We must have

\[\left| {\frac{{x + 1}}{x} - 1} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {\left( {1 + \frac{1}{x}} \right) - 1} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {\frac{1}{x}} \right| \lt \varepsilon .\]

We can choose a number \(N,\) depending on \(\varepsilon,\) such that \(\left| x \right| \gt N.\) Then the inequality \(\left| {{\frac{1}{x}}} \right| \lt \varepsilon \) will be satisfied if

\[\left| x \right| \gt \frac{1}{\varepsilon } = N.\]

This means that at large \(N\) (as \(x \to \infty \))

\[\lim\limits_{x \to \infty } \frac{{x + 1}}{x} = 1.\]

The graph of the function is sketched in Figure \(1.\)

Graph of function (x+1)/x
Figure 1.

Example 5.

Prove that \[\lim\limits_{x \to \infty } {\frac{{2x - 3}}{{x + 1}}} = 2.\]

Solution.

We assume that \(\varepsilon \gt 0.\) Find a number \(N\) such that for any \(x \gt N\) the following inequality is valid:

\[\left| {\frac{{2x - 3}}{{x + 1}} - 2} \right| \lt \varepsilon .\]

Convert this inequality to get

\[\left| {\frac{{2x - 3}}{{x + 1}} - 2} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {\frac{{2x - 3 - 2\left( {x + 1} \right)}}{{x + 1}}} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {\frac{{2x - 3 - 2x - 2}}{{x + 1}}} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {\frac{{ - 5}}{{x + 1}}} \right| \lt \varepsilon ,\;\; \Rightarrow \left| {x + 1} \right| \gt \frac{5}{\varepsilon }.\]

Since \(0 \lt x \lt N,\) then \(x + 1 \gt 0,\;\) so we can simply write

\[x + 1 \gt \frac{5}{\varepsilon }\;\;\text{or}\;\;\; x \gt \frac{5}{\varepsilon } - 1.\]

By setting \(N = {\frac{5}{\varepsilon }} - 1\) (or \(N = 0\) if this difference is negative), we obtain

\[\left| {\frac{{2x - 3}}{{x + 1}} - 2} \right| \lt \varepsilon \;\;\; \text{for all}\;\;x \gt N.\]

This means that (see Figure \(2\))

\[\lim\limits_{x \to \infty } \frac{{2x - 3}}{{x + 1}} = 2.\]
Graph of rational function (2x+1)/(x+1)
Figure 2.
Page 1 Page 2