Calculus

Triple Integrals

Triple Integrals Logo

Calculation of Volumes Using Triple Integrals

Solved Problems

Example 5.

Find the volume of the solid formed by two paraboloids:

\[{z_1} = {x^2} + {y^2}\;\;\text{and}\;\;{z_2} = 1 - {x^2} - {y^2}.\]

Solution.

Investigate intersection of the two paraboloids (Figure \(6\)).

A solid formed by two paraboloids
Figure 6.
Projection of the solid formed by two paraboloids onto the (rho,z)-plane
Figure 7.

Since \({\rho ^2} = {x^2} + {y^2},\) the equations of the paraboloids can be written as

\[{z_1} = {\rho ^2}\;\;\text{and}\;\; {z_2} = 1 - {\rho ^2}.\]

By setting \({z_1} = {z_2}\) for the intersection curve, we obtain

\[{\rho ^2} = 1 - {\rho ^2},\;\; \Rightarrow 2{\rho ^2} = 1,\;\; \Rightarrow {\rho ^2} = \frac{1}{2}\;\; \text{or}\;\;z = \frac{1}{{\sqrt 2 }} = \frac{{\sqrt 2 }}{2}.\]

For this value of \(\rho\) (Figure \(7\)), the coordinate \(z\) is

\[z = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} = \frac{1}{2}.\]

The volume of the solid is expressed in terms of the triple integral as

\[V = \iiint\limits_U {dxdydz} .\]

This integral in cylindrical coordinates becomes

\[V = \iiint\limits_U {dxdydz} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\frac{{\sqrt 2 }}{2}} {\rho d\rho } \int\limits_{{\rho ^2}}^{1 - {\rho ^2}} {dz} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\frac{{\sqrt 2 }}{2}} {\rho d\rho } \cdot \left[ {\left. z \right|_{{\rho ^2}}^{1 - {\rho ^2}}} \right] = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\frac{{\sqrt 2 }}{2}} {\rho \left( {1 - {\rho ^2} - {\rho ^2}} \right)d\rho } = 2\pi \int\limits_0^{\frac{{\sqrt 2 }}{2}} {\left( {\rho - 2{\rho ^3}} \right)d\rho } = 2\pi \left[ {\left. {\left( {\frac{{{\rho ^2}}}{2} - \frac{{2{\rho ^4}}}{4}} \right)} \right|_0^{\frac{{\sqrt 2 }}{2}}} \right] = 2\pi \left[ {\frac{{{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^2}}}{2} - \frac{{{{\left( {\frac{{\sqrt 2 }}{2}} \right)}^4}}}{2}} \right] = \pi \left( {\frac{1}{2} - \frac{1}{4}} \right) = \frac{\pi }{4}.\]

Example 6.

Calculate the volume of the ellipsoid \[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1.\]

Solution.

It is easier to calculate the volume of the ellipsoid using generalized spherical coordinates. Let

\[x = a\rho \cos \varphi \sin \theta ,\;\; y = b\rho \sin \varphi \sin \theta ,\;\; z = c\rho \cos \theta .\]

Since the absolute value of the Jacobian for transformation of Cartesian coordinates into generalized spherical coordinates is

\[\left| I \right| = abc{\rho ^2}\sin\theta ,\]

we have

\[dxdydz = abc{\rho ^2}\sin\theta d\rho d\varphi d\theta .\]

The volume of the ellipsoid is expressed through the triple integral:

\[V = \iiint\limits_U {dxdydz} = \iiint\limits_{U'} {abc{\rho ^2}\sin\theta d\rho d\varphi d\theta } .\]

By symmetry, we can find the volume of \(\frac{1}{8}\) part of the ellipsoid lying in the first octant \(\left( {x \ge 0,y \ge 0,z \ge 0} \right)\) and then multiply the result by \(8.\) The generalized spherical coordinates will range within the limits:

\[0 \le \rho \le 1,\;\; 0 \le \varphi \le \frac{\pi }{2},\;\; 0 \le \theta \le \frac{\pi }{2}.\]

Then the volume of the ellipsoid is

\[V = \iiint\limits_{U'} {abc{\rho ^2}\sin\theta d\rho d\varphi d\theta } = 8abc\int\limits_0^{\frac{\pi }{2}} {d\varphi } \int\limits_0^1 {{\rho ^2}d\rho } \int\limits_0^{\frac{\pi }{2}} {\sin\theta d\theta } = 8abc\int\limits_0^{\frac{\pi }{2}} {d\varphi } \int\limits_0^1 {{\rho ^2}d\rho } \cdot \left[ {\left. {\left( { - \cos \theta } \right)} \right|_0^{\frac{\pi }{2}}} \right] = 8abc\int\limits_0^{\frac{\pi }{2}} {d\varphi } \int\limits_0^1 {{\rho ^2}d\rho } \cdot \left( { - \cos \frac{\pi }{2} + \cos 0} \right) = 8abc\int\limits_0^{\frac{\pi }{2}} {d\varphi } \int\limits_0^1 {{\rho ^2}d\rho } = 8abc\int\limits_0^{\frac{\pi }{2}} {d\varphi } \cdot \left[ {\left. {\left( {\frac{{{\rho ^3}}}{3}} \right)} \right|_0^1} \right] = \frac{{8abc}}{3}\int\limits_0^{\frac{\pi }{2}} {d\varphi } = \frac{{8abc}}{3} \cdot \left[ {\left. \varphi \right|_0^{\frac{\pi }{2}}} \right] = \frac{{8abc}}{3} \cdot \frac{\pi }{2} = \frac{4}{3}\pi abc.\]

Example 7.

Find the volume of the solid bounded by the sphere \[{x^2} + {y^2} + {z^2} = 6\] and the paraboloid \[{x^2} + {y^2} = z.\]

Solution.

We first determine the curve of intersection of these surfaces. Substituting the equation of the paraboloid into the equation of the sphere, we find:

\[z + {z^2} = 6,\;\; \Rightarrow {z^2} + z - 6 = 0,\;\; \Rightarrow {z_{1,2}} = \frac{{ - 1 \pm 5}}{2} = 2; - 3.\]

The second root \({z_2} = - 3\) corresponds to intersection of the sphere with the lower shell of the paraboloid. So we do not consider this case. Thus, intersection of the solids happens at \(z = 2.\) Obviously, the projection of the region of integration on the \(xy\)-plane is the circle (Figure \(8\)) defined by the equation \({x^2} + {y^2} = 2.\)

Projection of a solid bounded by paraboloid and sphere
Figure 8.

The region of integration is bounded from above by the spherical surface, and from below by the paraboloid (Figure \(9\)).

A solid bounded by paraboloid and sphere
Figure 9.

The volume of the solid region is expressed by the integral

\[V = \iiint\limits_U {dxdydz} = \int\limits_{ - \sqrt 2 }^{\sqrt 2 } {dx} \int\limits_{-\sqrt {2 - {x^2}} }^{\sqrt {2 - {x^2}} } {dy} \int\limits_{{x^2} + {y^2}}^{\sqrt {6 - {x^2} - {y^2}} } {dz} .\]

It is convenient to convert the integral to cylindrical coordinates:

\[V = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\sqrt 2 } {\rho d\rho } \int\limits_{{\rho ^2}}^{\sqrt {6 - {\rho ^2}} } {dz} ,\]

where \({\rho ^2} = {x^2} + {y^2}\) and the integral includes the Jacobian \(\rho.\) As a result, we have:

\[V = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\sqrt 2 } {\rho d\rho } \int\limits_{{\rho ^2}}^{\sqrt {6 - {\rho ^2}} } {dz} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\sqrt 2 } {\rho d\rho } \cdot \left[ {\left. z \right|_{{\rho ^2}}^{\sqrt {6 - {\rho ^2}} }} \right] = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^{\sqrt 2 } {\rho \left( {\sqrt {6 - {\rho ^2}} - {\rho ^2}} \right)d\rho } = 2\pi \int\limits_0^{\sqrt 2 } {\rho \left( {\sqrt {6 - {\rho ^2}} - {\rho ^2}} \right)d\rho } = \pi \int\limits_0^{\sqrt 2 } {\left( {\sqrt {6 - {\rho ^2}} - {\rho ^2}} \right)d{\rho ^2}} .\]

We change the variable: \({\rho ^2} = t\). Here \(t = 0\) when \(\rho = 0,\) and, respectively, \(t = 2\) when \(\rho = \sqrt 2.\)

Now we can calculate the volume of the solid:

\[V = \pi \int\limits_0^{\sqrt 2 } {\left( {\sqrt {6 - {\rho ^2}} - {\rho ^2}} \right)d{\rho ^2}} = \pi \int\limits_0^2 {\left( {\sqrt {6 - t} - t} \right)dt} = \pi \left[ {\left. {\left( { - \frac{{2{{\left( {6 - t} \right)}^{\frac{3}{2}}}}}{3} - \frac{{{t^2}}}{2}} \right)} \right|_0^2} \right] = \pi \left[ { - \frac{2}{3}\left( {{4^{\frac{3}{2}}} - {6^{\frac{3}{2}}}} \right) - 2} \right] = \pi \left[ {\frac{2}{3}\left( {6\sqrt 6 - 8} \right) - 2} \right] = \pi \left( {4\sqrt 6 - \frac{{16}}{3} - 2} \right) = 2\pi \left( {\frac{{6\sqrt 6 - 11}}{3}} \right).\]

Example 8.

Calculate the volume of the solid bounded by the paraboloid \[z = 2 - {x^2} - {y^2}\] and the conic surface \[z = \sqrt {{x^2} + {y^2}}.\]

Solution.

First we investigate intersection of the two surfaces. By equating the coordinates \(z,\) we get the following equation:

\[2 - {x^2} - {y^2} = \sqrt {{x^2} + {y^2}} .\]

Let \({x^2} + {y^2} = {t^2}.\) Then

\[2 - {t^2} = t,\;\; \Rightarrow {t^2} + t - 2 = 0,\;\; \Rightarrow {t_{1,2}} = \frac{{ - 1 \pm 3}}{2} = - 2;1.\]

Only the root \(t = 1\) has the sense in the context of the given problem, that is

\[z = \sqrt {{x^2} + {y^2}} = 1\;\; \text{or}\;\;{x^2} + {y^2} = 1.\]

Thus, both the surfaces intersect at \(z = 1,\) and the intersection is a circle (Figure \(10\)).

Projection of a solid bounded by paraboloid and conic surface
Figure 10.

The region of integration is bounded from above by the paraboloid, and from below by the cone (Figure \(11\)).

A solid bounded by paraboloid and conic surface
Figure 11.

To calculate the volume of the solid we use cylindrical coordinates:

\[{x^2} + {y^2} = {\rho ^2},\;\; \sqrt {{x^2} + {y^2}} = \rho ,\;\; dxdydz = \rho d\rho d\varphi dz.\]

As a result, we find:

\[V = \iiint\limits_U {\rho d\rho d\varphi dz} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^1 {\rho d\rho } \int\limits_0^{2 - {\rho ^2}} {dz} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^1 {\rho d\rho \cdot \left( {2 - {\rho ^2} - \rho } \right)} = \int\limits_0^{2\pi } {d\varphi } \int\limits_0^1 {\left( {2\rho - {\rho ^3} - {\rho ^2}} \right)d\rho } = \int\limits_0^{2\pi } {d\varphi } \cdot \left[ {\left. {\left( {{\rho ^2} - \frac{{{\rho ^4}}}{4} - \frac{{{\rho ^3}}}{3}} \right)} \right|_0^1} \right] = \int\limits_0^{2\pi } {\left( {1 - \frac{1}{4} - \frac{1}{3}} \right)d\varphi } = \frac{5}{{12}}\int\limits_0^{2\pi } {d\varphi } = \frac{{5\pi }}{6}.\]
Page 1 Page 2