Definition and Properties of Triple Integrals
Definition of Triple Integral
We can introduce the triple integral similar to double integral as a limit of a Riemann sum. We start from the simplest case when the region of integration U is a rectangular box [a, b] × [c, d] × [p, q] (Figure 1).
Let the set of numbers \(\left\{ {{x_0},{x_1}, \ldots ,{x_m}} \right\}\) be a partition of \(\left[ {a,b} \right]\) into small intervals so that the following relations are valid:
Similarly, we can construct partitions of the segment \(\left[ {c,d} \right]\) along the \(y\)-axis and the segment \(\left[ {p,q} \right]\) along the \(z\)-axis:
The Riemann sum of the function \(f\left( {x,y,z} \right)\) over the partition of \(\left[ {a,b} \right] \times \left[ {c,d} \right] \) \(\times \left[ {p,q} \right]\) is defined by
Here \({\left( {{u_i},{v_j},{w_k}} \right)}\) is some point in the rectangular box \(\left( {{x_{i - 1}},{x_i}} \right) \) \(\times \left( {{y_{j - 1}},{y_j}} \right) \) \(\times \left( {{z_{k - 1}},{z_k}} \right),\) and the differences are
The triple integral of a function \(f\left( {x,y,z} \right)\) in the parallelepiped \(\left[ {a,b} \right] \times \left[ {c,d} \right] \times \left[ {p,q} \right]\) is defined as a limit of the Riemann sum, such that the maximum values of the differences \(\Delta {x_i},\) \(\Delta {y_j}\) and \(\Delta {z_k}\) approach zero:
To define the triple integral over a general region \(U,\) we choose a rectangular box \(\left[ {a,b} \right] \) \(\times \left[ {c,d} \right] \) \(\times \left[ {p,q} \right]\) containing the given region \(U.\) Then we introduce the function \(g\left( {x,y,z} \right)\) such that
Then the triple integral of the function \(f\left( {x,y,z} \right)\) over a general region \(U\) is defined as
Properties of Triple Integrals
Let \(f\left( {x,y,z} \right)\) and \(g\left( {x,y,z} \right)\) be functions which are integrable in the region \(U.\) Then the following properties are valid:
- \({\iiint\limits_U {\left[ {f\left( {x,y,z} \right) + g\left( {x,y,z} \right)} \right]dV} }\) \(= {\iiint\limits_U {f\left( {x,y,z} \right)dV} }\) \(+{ \iiint\limits_U {g\left( {x,y,z} \right)dV} ;}\)
- \({\iiint\limits_U {\left[ {f\left( {x,y,z} \right) - g\left( {x,y,z} \right)} \right]dV} }\) \(= {\iiint\limits_U {f\left( {x,y,z} \right)dV} }\) \(-{ \iiint\limits_U {g\left( {x,y,z} \right)dV} ;}\)
- \({\iiint\limits_U {kf\left( {x,y,z} \right)dV} }\) \(={ k\iiint\limits_U {f\left( {x,y,z} \right)dV},}\) where \(k\) is a constant;
- If \({f\left( {x,y,z} \right)} \le {g\left( {x,y,z} \right)}\) at any point of the region \(U,\) then
\[\iiint\limits_U {f\left( {x,y,z} \right)dV} \le \iiint\limits_U {g\left( {x,y,z} \right)dV} ;\]
- If the region \(U\) is a union of two non-overlapping regions \({U_1}\) and \({U_2},\) then
\[\iiint\limits_U {f\left( {x,y,z} \right)dV} = \iiint\limits_{{U_1}} {f\left( {x,y,z} \right)dV} + \iiint\limits_{{U_2}} {f\left( {x,y,z} \right)dV} ;\]
- Let \(m\) be the minimum and \(M\) be the maximum value of a continuous function \(f\left( {x,y,z} \right)\) in the region \(U.\) Then the following estimate is valid for the triple integral:
\[m \cdot V \le \iiint\limits_U {f\left( {x,y,z} \right)dV} \le M \cdot V,\]where \(V\) is the volume of the integration region \(U.\)
- The Mean Value Theorem for Triple Integrals
If a function \(f\left( {x,y,z} \right)\) is continuous in the region \(U,\) then there exists a point \({M_0} \in U\) such that\[\iiint\limits_U {f\left( {x,y,z} \right)dV} = f\left( {{M_0}} \right) \cdot V,\]where \(V\) is the volume of the region \(U.\)