Some Other Trigonometric Inequalities
A trigonometric inequality is called an inequality that contains a trigonometric function (sin x, cos x, tan x, cot x) of an unknown angle.
Solving trigonometric inequalities (as well as equations), as a rule, can be reduced to solving the basic trigonometric inequalities such as
The simplest trigonometric inequalities are conveniently solved using the unit circle.
If the left side of a trigonometric inequality \(f\left({x}\right) \ge 0\) (the inequality sign can also be \({\ge,\lt \text{ or } \le}\)) is represented as
where \(f\left({x}\right)\) is one of the trigonometric functions \(\sin x,\) \(\cos x,\) \(\tan x,\) \(\cot x\) and \({a_1, a_2, \ldots, a_n}\) are real numbers, then such inequality can be solved by the interval method.
Using the method of intervals on a unit circle, it should be remembered that if at some point there is an odd number of coinciding roots, then the sign of the expression
changes to the opposite when passing through such a point. If there is an even number of roots at the point, then the sign of the expression does not change.
Solved Problems
Example 1.
Solve the inequality
Solution.
Using the definition of the cotangent, we write the inequality in the following form:
We are assuming here that the tangent is not zero, which is obvious.
The last inequality is written as
Its solution is possible only in the form of equality
Hence,
Example 2.
Solve the inequality
Solution.
We convert the product of functions to a sum:
Since
the inequality takes the form
We have obtained the basic inequality. Its solution looks like
Example 3.
Solve the inequality
Solution.
Using the double-angle identity for sine, we write the inequality in the following form:
Hence it follows that
This basic trig inequality has the following solution:
or
The set of solutions is shown in Figure 1.
Example 4.
Solve the trigonometric inequality
Solution.
Remember that
So the inequality takes the form
Multiply both sides by minus one:
Denoting \(\sin x = t\) we solve the quadratic inequality:
Taking into account the coefficient in front of the leading term, the solution of the inequality has the form
So
Depict this set of solutions on the unit circle:
Thus the solution of the inequality is contained in the sector
or in general
Example 5.
Solve the inequality
Solution.
This inequality is equivalent to the following system of inequalities:
We begin with the first inequality:
On the unit circle, the solution to this inequality is represented by two sectors.
Consider the second inequality:
where \(k \in \mathbb{Z}.\)
The solutions to this inequality look like this
Let's now superimpose both pictures on one unit circle and determine the set of angles that satisfy both inequalities:
We see that the solution in the first and fourth quadrants is described by the set
Add periodic terms and write down the final answer:
where \(m, \ell \in \mathbb{Z}.\)
Example 6.
Solve the trigonometric inequality
Solution.
Find the zeros of the numerator in the interval \(\left[{0, 2\pi}\right]:\)
Note that \(\sin x \ge \frac{1}{2}\) when \(x \in \left[{\frac{\pi}{6}, \frac{5\pi}{6}}\right].\)
We also examine the zeros of the denominator. Naturally, they do not belong to the domain of the inequality.
Draw all found roots on the unit circle:
At \(x = \frac{\pi}{6},\) both the numerator and denominator are zero, i.e. the point \(x = \frac{\pi}{6}\) has multiplicity 2. The inequality does not change its sign when passing through this point.
Determine the sign of the expression for \(x = 0:\)
Using the method of intervals, we put the signs on the unit circle, taking into account the multiplicity of the roots. As can be seen from the figure, the inequality has a solution in the range of angles \(\left[{\frac{5\pi}{6}, \frac{11\pi}{6}}\right).\) The final answer looks like