Precalculus

Trigonometry

Trigonometry Logo

Pythagorean Trigonometric Identities

Solved Problems

Example 1.

Suppose \(\sin \alpha = \frac{4}{5},\) where \(0 \lt \alpha \lt \frac{\pi }{2}.\) Find the \(5\) other trigonometric functions.

Solution.

Using the identity \({\sin^2}\alpha + {\cos^2}\alpha = 1,\) we calculate the cosine function:

\[{\sin ^2}\alpha + {\cos ^2}\alpha = 1,\;\; \Rightarrow {\cos ^2}\alpha = 1 - {\sin ^2}\alpha ,\;\;\Rightarrow \cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } = \sqrt {1 - {{\left( {\frac{4}{5}} \right)}^2}} = \sqrt {1 - \frac{{16}}{{25}}} = \sqrt {\frac{9}{{25}}} = \frac{3}{5}.\]

The tangent function is the the ratio of the sine and cosine:

\[\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{4}{5}}}{{\frac{3}{5}}} = \frac{4}{3}.\]

The cotangent is the reciprocal of the tangent:

\[\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{4}{3}}} = \frac{3}{4}.\]

The secant and cosecant are the reciprocals of the cosine and sine, respectively:

\[\sec \alpha = \frac{1}{{\cos \alpha }} = \frac{1}{{\frac{3}{5}}} = \frac{5}{3},\]
\[\csc \alpha = \frac{1}{{\sin \alpha }} = \frac{1}{{\frac{4}{5}}} = \frac{5}{4}.\]

Example 2.

Suppose \(\sec \alpha = \frac{25}{7},\) where \(0 \lt \alpha \lt \frac{\pi }{2}.\) Find the \(5\) other trigonometric functions.

Solution.

By definition, \(\sec \alpha = \frac{1}{{\cos \alpha }}.\) Therefore,

\[\cos \alpha = \frac{1}{{\sec \alpha }} = \frac{1}{{\frac{{25}}{7}}} = \frac{7}{{25}}.\]

Using the identity \({\sin ^2}\alpha + {\cos ^2}\alpha = 1,\) we find \(\sin \alpha:\)

\[\sin \alpha = \sqrt {1 - {{\cos }^2}\alpha } = \sqrt {1 - {{\left( {\frac{7}{{25}}} \right)}^2}} = \sqrt {1 - \frac{{49}}{{625}}} = \sqrt {\frac{{576}}{{625}}} = \frac{{24}}{{25}}.\]

The tangent function can be expressed in terms of the sine and cosine:

\[\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{24}}{{25}}}}{{\frac{7}{{25}}}} = \frac{{24}}{7}.\]

The cotangent is the reciprocal of the tangent:

\[\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\frac{{24}}{7}}} = \frac{7}{{24}}.\]

Finally, we compute the value of the cosecant:

\[\csc \alpha = \frac{1}{{\sin \alpha }} = \frac{1}{{\frac{{24}}{{25}}}} = \frac{{25}}{{24}}.\]

Example 3.

Simplify the expression \[\tan \alpha + \frac{{\cos \alpha }}{{1 + \sin \alpha }}.\]

Solution.

\[\tan \alpha + \frac{{\cos \alpha }}{{1 + \sin \alpha }} = \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{1 + \sin \alpha }} = \frac{{\sin \alpha \left( {1 + \sin \alpha } \right) + \cos \alpha \cos \alpha }}{{\cos \alpha \left( {1 + \sin \alpha } \right)}} = \frac{{\sin \alpha + \overbrace {{{\sin }^2}\alpha + {{\cos }^2}\alpha }^{ = 1}}}{{\cos \alpha \left( {1 + \sin \alpha } \right)}} = \frac{{\sin \alpha + 1}}{{\cos \alpha \left( {\sin \alpha + 1} \right)}} = \frac{1}{{\cos \alpha }} = \sec \alpha .\]

Example 4.

Simplify the expression \[{\tan ^2}\alpha - {\sin ^2}\alpha - {\tan ^2}\alpha \,{\sin ^2}\alpha .\]

Solution.

We denote this expression by \(A.\)

\[A = {\tan ^2}\alpha - {\sin ^2}\alpha - {\tan ^2}\alpha \,{\sin ^2}\alpha = {\tan ^2}\alpha - {\sin ^2}\alpha \left( {1 + {{\tan }^2}\alpha } \right).\]

Using the identity \(1 + {\tan ^2}\alpha = {\sec ^2}\alpha ,\) we have

\[A = {\tan ^2}\alpha - {\sin ^2}\alpha \,{\sec ^2}\alpha .\]

By definition, \({\sec ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}.\) Therefore,

\[\require{cancel}A = {\tan ^2}\alpha - \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \cancel{{\tan ^2}\alpha} - \cancel{{\tan ^2}\alpha} = 0.\]

Example 5.

Prove the identity \[\sec \alpha - \sin \alpha \tan \alpha = \cos \alpha .\]

Solution.

By definition,

\[\sec \alpha = \frac{1}{{\cos \alpha }} \;\text{ and }\; \tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }}.\]

Hence,

\[\sec \alpha - \sin \alpha \tan \alpha = \cos \alpha ,\;\; \Rightarrow \frac{1}{{\cos \alpha }} - \frac{{{{\sin }^2}\alpha }}{{\cos \alpha }} = \cos \alpha ,\;\; \Rightarrow \frac{{1 - {{\sin }^2}\alpha }}{{\cos \alpha }} = \cos \alpha ,\;\; \Rightarrow \frac{{{{\cos }^{\cancel{2}}}\alpha }}{{\cancel{\cos \alpha} }} = \cos \alpha ,\;\; \Rightarrow \cos \alpha = \cos \alpha .\]

Example 6.

Prove the identity \[\frac{{{{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }} \cdot \frac{{1 + {{\cot }^2}\alpha }}{{{{\cot }^2}\alpha }} = {\tan ^2}\alpha .\]

Solution.

We use the Pythagorean identities

\[1 + {\tan ^2}\alpha = {\sec ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }}, \;\text{ and }\]
\[1 + {\cot ^2}\alpha = {\csc ^2}\alpha = \frac{1}{{{{\sin }^2}\alpha }}.\]

Then we write the initial identity in the form

\[\frac{{{{\tan }^2}\alpha }}{{\frac{1}{{{{\cos }^2}\alpha }}}} \cdot \frac{{\frac{1}{{{{\sin }^2}\alpha }}}}{{{{\cot }^2}\alpha }} = {\tan ^2}\alpha , \;\text{ or }\]
\[\frac{{{{\tan }^2}\alpha \,{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha \,{{\cot }^2}\alpha }} = {\tan ^2}\alpha .\]

Since \({\cot ^2}\alpha = \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }},\) we have

\[\frac{{{{\tan }^2}\alpha \cancel{{{\cot }^2}\alpha} }}{{\cancel{{{\cot }^2}\alpha} }} = {\tan ^2}\alpha ,\;\; \Rightarrow {\tan ^2}\alpha = {\tan ^2}\alpha .\]

Example 7.

Suppose \(\tan \alpha = \frac{2}{{15}}.\) Calculate the value of the expression \[\frac{{5\sin \alpha + 6\cos \alpha }}{{4\cos \alpha - 3\sin \alpha }}.\]

Solution.

Since \(\tan \alpha\) is a finite quantity, then \(\cos \alpha \ne 0.\) Therefore, we can divide the numerator and denominator of the expression by \(\cos \alpha:\)

\[\frac{{5\sin \alpha + 6\cos \alpha }}{{4\cos \alpha - 3\sin \alpha }} = \frac{{\frac{{5\sin \alpha + 6\cos \alpha }}{{\cos \alpha }}}}{{\frac{{4\cos \alpha - 3\sin \alpha }}{{\cos \alpha }}}} = \frac{{\frac{{5\sin \alpha }}{{\cos \alpha }} + \frac{{6\cancel{\cos \alpha} }}{{\cancel{\cos \alpha} }}}}{{\frac{{4\cancel{\cos \alpha} }}{{\cancel{\cos \alpha} }} - \frac{{3\sin \alpha }}{{\cos \alpha }}}} = \frac{{5\tan \alpha + 6}}{{4 - 3\tan \alpha }} = \frac{{5 \times \frac{2}{{15}} + 6}}{{4 - 3 \times \frac{2}{{15}}}} = \frac{{\frac{2}{3} + 6}}{{4 - \frac{2}{5}}} = \frac{{\frac{{2 + 18}}{3}}}{{\frac{{20 - 2}}{5}}} = \frac{{\frac{{20}}{3}}}{{\frac{{18}}{5}}} = \frac{{100}}{{54}} = \frac{{50}}{{27}}.\]

Example 8.

Let \(\tan \alpha + \cot \alpha = n.\) Find \({\tan ^2}\alpha + {\cot ^2}\alpha .\)

Solution.

By squaring both sides of the equation \(\tan \alpha + \cot \alpha = n,\) we obtain

\[{\left( {\tan \alpha + \cot \alpha } \right)^2} = {n^2},\;\; \Rightarrow {\tan ^2}\alpha + 2\,\underbrace {\tan \alpha \cot \alpha }_{ = 1} + {\cot ^2}\alpha = {n^2},\;\; \Rightarrow {\tan ^2}\alpha + 2 + {\cot ^2}\alpha = {n^2},\;\; \Rightarrow {\tan ^2}\alpha + {\cot ^2}\alpha = {n^2} - 2.\]

Example 9.

The length of the hypotenuse of a triangle is \(1,\) and the length of one of the legs is \(a.\) Find the \(6\) trigonometric functions of an angle \(\alpha\) opposite to this leg.

Solution.

A right triangle with one leg a and hypotenuse equal to 1.
Figure 2.

Using the Pythagorean theorem, we first find the length of the other leg \(b\), adjacent to \(\alpha:\)

\[{a^2} + {b^2} = 1,\;\; \Rightarrow b = \sqrt {1 - {a^2}} .\]

The sine and cosine of the angle \(\alpha\) are given by

\[\sin \alpha = \frac{a}{c} = a,\;\;\cos \alpha = \frac{b}{c} = \sqrt {1 - {a^2}}.\]

Determine the tangent and cotangent of \(\alpha:\)

\[\tan \alpha = \frac{a}{b} = \frac{a}{{\sqrt {1 - {a^2}} }},\;\;\cot \alpha = \frac{b}{a} = \frac{{\sqrt {1 - {a^2}} }}{a}.\]

Calculate the values of the secant and cosecant:

\[\sec \alpha = \frac{c}{b} = \frac{1}{{\sqrt {1 - {a^2}} }},\;\;\csc \alpha = \frac{c}{a} = \frac{1}{a}.\]

Example 10.

Let \(\sin \alpha + \cos \alpha = k.\) Calculate \({\sin ^3}\alpha + {\cos ^3}\alpha. \)

Solution.

We factor the sum of two cubes:

\[{\sin ^3}\alpha + {\cos ^3}\alpha = \left( {\sin \alpha + \cos \alpha } \right) \left( {{{\sin }^2}\alpha - \sin \alpha \cos \alpha + {{\cos }^2}\alpha } \right).\]

Since \({\sin ^2}\alpha + {\cos ^2}\alpha = 1,\) we represent the last expression in the form

\[{\sin ^3}\alpha + {\cos ^3}\alpha = \left( {\sin \alpha + \cos \alpha } \right)\left( {1 - \sin \alpha \cos \alpha } \right).\]

Now, to find the product \(\sin \alpha \cos \alpha,\) we square both sides of the equation \(\sin \alpha + \cos \alpha = k:\)

\[{\left( {\sin \alpha + \cos \alpha } \right)^2} = {k^2},\;\; \Rightarrow {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha = {k^2},\;\; \Rightarrow 1 + 2\sin \alpha \cos \alpha = {k^2},\;\; \Rightarrow \sin \alpha \cos \alpha = \frac{{{k^2} - 1}}{2}.\]

Hence,

\[{\sin ^3}\alpha + {\cos ^3}\alpha = \left( {\sin \alpha + \cos \alpha } \right)\left( {1 - \sin \alpha \cos \alpha } \right) = k\left( {1 - \frac{{{k^2} - 1}}{2}} \right) = \frac{{k\left( {3 - {k^2}} \right)}}{2}.\]

Example 11.

Let \(\sin \alpha + \cos \alpha = m.\) Calculate \({\sin ^4}\alpha + {\cos ^4}\alpha. \)

Solution.

We square both sides of the Pythagorean trig identity:

\[{\sin ^2}\alpha + {\cos ^2}\alpha = 1,\]
\[\Rightarrow {\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} = 1,\]
\[\Rightarrow {\sin ^4}\alpha + 2\,{\sin ^2}\alpha \,{\cos ^2}\alpha + {\cos ^4}\alpha = 1.\]

Then

\[{\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2{\left( {\sin \alpha \cos \alpha } \right)^2}.\]

Now we find \(\sin \alpha \cos \alpha.\) By condition, \(\sin \alpha + \cos \alpha = m.\) So,

\[{\left( {\sin \alpha + \cos \alpha } \right)^2} = {m^2},\;\; \Rightarrow {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha = {m^2},\;\; \Rightarrow 1 + 2\sin \alpha \cos \alpha = {m^2},\;\; \Rightarrow \sin \alpha \cos \alpha = \frac{{{m^2} - 1}}{2}.\]

Therefore,

\[{\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2{\left( {\frac{{{m^2} - 1}}{2}} \right)^2} = 1 - 2 \cdot \frac{{{m^4} - 2{m^2} + 1}}{4} = \frac{{1 + 2{m^2} - {m^4}}}{2}.\]

Example 12.

Let \(\tan \alpha = \sqrt{3}.\) Calculate \({\sin ^4}\alpha + {\cos ^4}\alpha .\)

Solution.

Using the identity \({\sin ^2}\alpha + {\cos ^2}\alpha = 1,\) we have

\[{\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)^2} = 1,\;\; \Rightarrow {\sin ^4}\alpha + 2\,{\sin ^2}\alpha\, {\cos ^2}\alpha + {\cos ^4}\alpha = 1,\;\; \Rightarrow {\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2\,{\sin ^2}\alpha \,{\cos ^2}\alpha .\]

By condition,

\[\tan \alpha = \sqrt 3 ,\;\; \Rightarrow {\tan ^2}\alpha = 3.\]

Given the tangent function, find the cosine squared:

\[{\tan ^2}\alpha + 1 = {\sec ^2}\alpha ,\;\; \Rightarrow {\sec ^2}\alpha = \frac{1}{{{{\cos }^2}\alpha }} = 3 + 1 = 4,\;\; \Rightarrow {\cos ^2}\alpha = \frac{1}{4}.\]

The sine squared is given by

\[{\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{4} = \frac{3}{4}.\]

Then

\[{\sin ^4}\alpha + {\cos ^4}\alpha = 1 - 2{\sin ^2}\alpha {\cos ^2}\alpha = 1 - 2 \cdot \frac{3}{4} \cdot \frac{1}{4} = 1 - \frac{3}{8} = \frac{5}{8}.\]
Page 1 Page 2