Method of Eigenvalues and Eigenvectors
Solved Problems
Example 1.
Find the general solution of the system of differential equations
\[\frac{{dx}}{{dt}} = - 2x + 5y,\; \frac{{dy}}{{dt}} = x + 2y.\]
Solution.
We calculate the eigenvalues \({\lambda_i}\) of the matrix \(A\) composed of the coefficients of the given equations:
\[\det \left( {A - \lambda I} \right)
= \left| {\begin{array}{*{20}{c}}
{ - 2 - \lambda }&5\\
1&{2 - \lambda }
\end{array}} \right| = 0,\;\; \Rightarrow
\left( { - 2 - \lambda } \right)\left( {2 - \lambda } \right) - 5 = 0,\;\; \Rightarrow
\left( {\lambda + 2} \right)\left( {\lambda - 2} \right) - 5 = 0,\;\; \Rightarrow
{\lambda ^2} - 9 = 0,\;\; \Rightarrow
{\lambda _1} = 3,\;{\lambda _2} = - 3.\]
In this example, the auxiliary equation has two distinct real roots.
Find an eigenvector \({\mathbf{V}_1}\) corresponding to the eigenvalue \({\lambda _1} = 3.\) Substituting \({\lambda _1} = 3,\) we get the vector-matrix equation for \({\mathbf{V}_1}:\)
\[\left( {A - \lambda I} \right){\mathbf{V}_1} = \mathbf{0}.\]
Let the eigenvector \({\mathbf{V}_1}\) have components \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) (where the superscript \(T\) denotes transposition). Then the previous equation can be written as
\[\left[ {\begin{array}{*{20}{c}}
{ - 2 - 3}&5\\
1&{2 - 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
{ - 5}&5\\
1&{ - 1}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0}.\]
After matrix multiplication we get a system of two equations:
\[\left\{ \begin{array}{l}
- 5{V_{11}} + 5{V_{21}} = 0\\
{V_{11}} - {V_{21}} = 0
\end{array} \right..\]
Both equations are linearly dependent. From the second equation we find the relation between the coordinates of the eigenvector: \({V_{11}} = {V_{21}}.\) Suppose that \({V_{21}} = 1.\) Then \({V_{11}} = 1.\) Thus, the eigenvector \({\mathbf{V}_1}\) has coordinates \({\mathbf{V}_1} = {\left( {1,1} \right)^T}.\)
Similarly, we find the second eigenvector \({\mathbf{V}_2}\) corresponding to \({\lambda _2} = -3.\) Let \({\mathbf{V}_2} =\) \( {\left( {{V_{21}},{V_{22}}} \right)^T}.\) Then
\[\left[ {\begin{array}{*{20}{c}}
{ - 2 + 3}&5\\
1&{2 + 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
1&5\\
1&5
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0}.\]
We get the system of two identical equations:
\[\left\{ \begin{array}{l}
{V_{21}} + 5{V_{22}} = 0\\
{V_{21}} + 5{V_{22}} = 0
\end{array} \right..\]
From this we find the coordinates of the eigenvector \({\mathbf{V}_2}:\)
\[{V_{21}} = - 5{V_{22}},\;\; {V_{22}} = 1,\;\; {V_{21}} = - 5.\]
Hence, \({\mathbf{V}_2} = {\left( {-5,1} \right)^T}.\)
Thus, the system has two different eigenvalues and two eigenvectors. The general solution is given by
\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right] = {C_1}{e^{3t}}\left[ {\begin{array}{*{20}{c}}
1\\
1
\end{array}} \right] + {C_2}{e^{ - 3t}}\left[ {\begin{array}{*{20}{c}}
{ - 5}\\
1
\end{array}} \right],\]
where \({C_1},\) \({C_2}\) are arbitrary numbers.
Example 2.
Find the general solution of the system of differential equations
\[\frac{{dx}}{{dt}} = x - 8y,\; \frac{{dy}}{{dt}} = 2x + y.\]
Solution.
We seek a solution of the form
\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right] \sim {e^{\lambda t}}\mathbf{V},\]
where \(\lambda\) is the eigenvalue of the matrix \(A\) composed of the coefficients of these equations, and \(\mathbf{V}\) is the corresponding eigenvector. Solve the auxiliary equation:
\[\det \left( {A - \lambda I} \right)
= \left| {\begin{array}{*{20}{c}}
{1 - \lambda }&{ - 8}\\
2&{1 - \lambda }
\end{array}} \right| = 0,\;\; \Rightarrow
{\left( {1 - \lambda } \right)^2} + 16 = 0,\;\; \Rightarrow
{\left( {\lambda - 1} \right)^2} = - 16,\;\; \Rightarrow
\left| {\lambda - 1} \right| = \pm 4i,\;\; \Rightarrow
{\lambda _{1,2}} = 1 \pm 4i.\]
We obtain two eigenvalues as a pair of complex conjugate numbers. Find the eigenvector \({\mathbf{V}_1}\) for the eigenvalue \({\lambda _1} = 1 + 4i\) from the following equations:
\[\left[ {\begin{array}{*{20}{c}}
{1 - \left( {1 + 4i} \right)}&{ - 8}\\
2&{1 - \left( {1 + 4i} \right)}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
{ - 4i}&{ - 8}\\
2&{ - 4i}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{c}}
{ - 4i{V_{11}} - 8{V_{21}} = 0}\\
{2{V_{11}} - 4i{V_{21}} = 0}
\end{array}} \right..\]
Both equations are linearly dependent. From the second equation we have:
\[2{V_{11}} - 4i{V_{21}} = 0,\;\; \Rightarrow {V_{11}} = 2i{V_{21}},\;\; \Rightarrow {V_{21}} = 1,\;{V_{11}} = 2i.\]
Thus, the eigenvector \({\mathbf{V}_1}\) is
\[{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2i}\\
1
\end{array}} \right].\]
Consequently, the complex number \({\lambda _1} = 1 + 4i\) produces a solution of the form
\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right]
= {e^{{\lambda _1}t}}{\mathbf{V}_1}
= {e^{\left( {1 + 4i} \right)t}}\left[ {\begin{array}{*{20}{c}}
{2i}\\
1
\end{array}} \right].\]
Transform the exponential function by Euler's formula:
\[{e^{\left( {1 + 4i} \right)t}} = {e^t}{e^{4it}} = {e^t}\left( {\cos 4t + i\sin 4t} \right).\]
The solution \({\mathbf{X}_1}\left( t \right)\) takes the form:
\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right]
= {e^t}\left( {\cos 4t + i\sin 4t} \right)\left[ {\begin{array}{*{20}{c}}
{2i}\\
1
\end{array}} \right],\]
or after multiplication
\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{{e^t}\left( {\cos 4t + i\sin 4t} \right)2i}\\
{{e^t}\left( {\cos 4t + i\sin 4t} \right)}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{{e^t}\left( { - 2\sin 4t + 2i\cos 4t} \right)}\\
{{e^t}\left( {\cos 4t + i\sin 4t} \right)}
\end{array}} \right].\]
In the complex solution, the real and imaginary parts are linearly independent. Separating them, we find the general solution:
\[\text{Re}\left[ {{\mathbf{X}_1}\left( t \right)} \right] = \left[ {\begin{array}{*{20}{c}}
{{e^t}\left( { - 2\sin 4t} \right)}\\
{{e^t}\cos 4t}
\end{array}} \right],\;\;\;
\text{Im}\left[ {{\mathbf{X}_1}\left( t \right)} \right] = \left[ {\begin{array}{*{20}{c}}
{{e^t}\left( {2\cos 4t} \right)}\\
{{e^t}\sin 4t}
\end{array}} \right].\]
Thus, the general solution has the form
\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right]
= {C_1}{e^t}\left[ {\begin{array}{*{20}{c}}
{ - 2\sin 4t}\\
{\cos 4t}
\end{array}} \right] + {C_2}{e^t}\left[ {\begin{array}{*{20}{c}}
{2\cos 4t}\\
{\sin 4t}
\end{array}} \right],\]
where \({C_1},\) \({C_2}\) are arbitrary numbers.
Example 3.
Find the general solution of the system of differential equations
\[\frac{{dx}}{{dt}} = 3x,\; \frac{{dy}}{{dt}} = 3y.\]
Solution.
The matrix of the system is diagonal:
\[A = \left[ {\begin{array}{*{20}{c}}
3&0\\
0&3
\end{array}} \right].\]
Therefore, we can just say that the eigenvectors are
\[
{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
3\\
0
\end{array}} \right],\;{\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}}
0\\
3
\end{array}} \right]\;\;\;
\text{or}\;\;\;
{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
1\\
0
\end{array}} \right],\;{\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right].\]
However, we will construct a solution, following the general algorithm. Calculate the eigenvalues of the matrix \(A:\)
\[
\det \left( {A - \lambda I} \right)
= \left| {\begin{array}{*{20}{c}}
{3 - \lambda }&0\\
0&{3 - \lambda }
\end{array}} \right| = 0,\;\; \Rightarrow
{\left( {\lambda - 3} \right)^2} = 0,\;\; \Rightarrow
\lambda = 3.\]
The matrix has a single eigenvalue with algebraic multiplicity \(2.\) If we substitute the number \({\lambda _1} = 3\) into the system of equations for the eigenvector \(\mathbf{V},\) we obtain a singular case:
\[\left[ {\begin{array}{*{20}{c}}
{3 - 3}&0\\
0&{3 - 3}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
0&0\\
0&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{c}}
{0 \cdot {V_{11}} + 0 \cdot {V_{21}} = 0}\\
{0 \cdot {V_{11}} + 0 \cdot {V_{21}} = 0}
\end{array}} \right.,\;\; \Rightarrow
0 \cdot {V_{11}} + 0 \cdot {V_{21}} = 0.\]
It is clear that any nonzero vector \(\mathbf{V}\) will be the eigenvector for the given matrix \(A.\) Therefore, it is convenient to take the following two linearly independent vectors as a basis of eigenvectors:
\[{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
1\\
0
\end{array}} \right],\;\;{\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right].\]
Note that we have the case where the eigenvalue \({\lambda _1} = 3\) has the same algebraic and geometric multiplicity: \({k_1} =\) \( {s_1} = 2.\) This corresponds to the Case \(2\) in our classification.
The general solution of the system of equations can be written as
\[\mathbf{X}\left( t \right) = {C_1}{e^{3t}}\left[ {\begin{array}{*{20}{c}}
1\\
0
\end{array}} \right] + {C_2}{e^{3t}}\left[ {\begin{array}{*{20}{c}}
0\\
1
\end{array}} \right].\]
Example 4.
Find the general solution of the system of differential equations
\[\frac{{dx}}{{dt}} = x + 2y - 3z,\;\frac{{dy}}{{dt}} = - 5x + y - 4z,\;\frac{{dz}}{{dt}} = - 2y + 4z.\]
Solution.
We calculate the eigenvalues of \(A:\)
\[\det \left( {A - \lambda I} \right)
= \left| {\begin{array}{*{20}{c}}
{1 - \lambda }&2&{ - 3}\\
{ - 5}&{1 - \lambda }&{ - 4}\\
0&{ - 2}&{4 - \lambda }
\end{array}} \right| = 0.\]
Expand the determinant along the first column:
\[\left( {1 - \lambda } \right) \left[ {\left( {1 - \lambda } \right)\left( {4 - \lambda } \right) - 8} \right] + 5\left[ {2\left( {4 - \lambda } \right) - 6} \right] = 0,\;\; \Rightarrow \left( {1 - \lambda } \right)\left( {{\lambda ^2} - 5\lambda - 4} \right) + 5\left( { - 2\lambda + 2} \right) = 0,\;\; \Rightarrow \color{blue}{\lambda ^2} - \color{red}{5\lambda} - \color{green}4 - {\lambda ^3} + \color{blue}{5{\lambda ^2}} + \color{red}{4\lambda} - \color{red}{10\lambda} + \color{green}{10} = \color{black}0,\;\; \Rightarrow {\lambda ^3} - \color{blue}{6{\lambda ^2}} + \color{red}{11\lambda} - \color{green}6 = \color{black}0.\]
You may notice that one of the roots of the cubic equation is the number \(\lambda = 1.\) Then we get
\[{\lambda ^3} - {\lambda ^2} - 5{\lambda ^2} + 5\lambda + 6\lambda - 6 = 0,\;\; \Rightarrow {\lambda ^2}\left( {\lambda - 1} \right) - 5\lambda \left( {\lambda - 1} \right) + 6\left( {\lambda - 1} \right) = 0,\;\; \Rightarrow \left( {\lambda - 1} \right) \left( {{\lambda ^2} - 5\lambda + 6} \right) = 0.\]
The quadratic equation, in turn, has roots \(\lambda = 2,3.\) Therefore, the matrix \(A\) has three distinct real eigenvalues:
\[{\lambda _1} = 1,\;\; {\lambda _2} = 2,\;\; {\lambda _3} = 3.\]
Now we define an eigenvector for each of the eigenvalues.
Determine the vector \({\mathbf{V}_1}\) for the number \({\lambda _1} = 1\) by solving the vector-matrix equation
\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0}.\]
Denoting \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}},{V_{31}}} \right)^T},\) we can write this equation in the form
\[\left[ {\begin{array}{*{20}{c}}
{1 - 1}&2&{ - 3}\\
{ - 5}&{1 - 1}&{ - 4}\\
0&{ - 2}&{4 - 1}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
0&2&{ - 3}\\
{ - 5}&0&{ - 4}\\
0&{ - 2}&3
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right] = \mathbf{0}.\]
As a result, we have a system of linear algebraic equations:
\[\left\{ \begin{array}{l}
0 + 2{V_{21}} - 3{V_{31}} = 0\\
- 5{V_{11}} + 0 - 4{V_{31}} = 0\\
0 - 2{V_{21}} + 3{V_{31}} = 0
\end{array} \right..\]
In this system, the first and third equations are the same, i.e., the rank of the system is \(2.\) We leave two independent equations and take \({V_{31}}\) as a free variable. This yields:
\[\left\{ \begin{array}{l}
2{V_{21}} - 3{V_{31}} = 0\\
5{V_{11}} + 4{V_{31}} = 0
\end{array} \right.,\;\; {V_{31}} = t,\;\; \Rightarrow
\left\{ \begin{array}{l}
2{V_{21}} = 3t\\
5{V_{11}} = - 4t
\end{array} \right.,\;\; \Rightarrow
\left\{ \begin{array}{l}
{V_{21}} = \frac{3}{2}t\\
{V_{11}} = - \frac{4}{5}t
\end{array} \right..\]
Thus, the eigenvector \({\mathbf{V}_1}\) has coordinates
\[{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{ - \frac{4}{5}t}\\
{\frac{3}{2}t}\\
t
\end{array}} \right]
\sim t\left[ {\begin{array}{*{20}{c}}
{ - 8}\\
{15}\\
{10}
\end{array}} \right]
\sim \left[ {\begin{array}{*{20}{c}}
{ - 8}\\
{15}\\
{10}
\end{array}} \right].\]
where for simplicity we set \(t = 1.\)
Similarly, we find the coordinates of the second eigenvector \({\mathbf{V}_2}\) corresponding to the number \({\lambda _2} = 2.\) We put \({\mathbf{V}_2} =\) \( {\left( {{V_{12}},{V_{22}},{V_{32}}} \right)^T}.\) Then we have the following equations:
\[\left[ {\begin{array}{*{20}{c}}
{1 - 2}&2&{ - 3}\\
{ - 5}&{1 - 2}&{ - 4}\\
0&{ - 2}&{4 - 2}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{12}}}\\
{{V_{22}}}\\
{{V_{32}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
{ - 1}&2&{ - 3}\\
{ - 5}&{ - 1}&{ - 4}\\
0&{ - 2}&2
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{12}}}\\
{{V_{22}}}\\
{{V_{32}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{l}}
{ - {V_{12}} + 2{V_{22}} - 3{V_{32}} = 0}\\
{ - 5{V_{12}} - {V_{22}} - 4{V_{32}} = 0}\\
{ - 2{V_{22}} + 2{V_{32}} = 0}
\end{array}} \right..\]
Let \({V_{32}} = t.\) From the third equation we find: \({V_{22}} = {V_{32}} = t.\) Substituting in the first equation, we get:
\[{V_{12}} = 2{V_{22}} - 3{V_{32}} = 2t - 3t = - t.\]
Hence, the eigenvector \({\mathbf{V}_2}\) is
\[{\mathbf{V}_2}
= \left[ {\begin{array}{*{20}{c}}
{{V_{12}}}\\
{{V_{22}}}\\
{{V_{32}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{ - t}\\
t\\
t
\end{array}} \right]
= t\left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1\\
1
\end{array}} \right].\]
At \(t = 1\) one can write: \({\mathbf{V}_2} =\) \( {\left( { - 1,1,1} \right)^T}.\)
Now we calculate the coordinates of the third eigenvector \({\mathbf{V}_3}\) corresponding to the number \({\lambda _3} = 3.\) Denoting \({\mathbf{V}_3} = {\left( {{V_{13}},{V_{23}},{V_{33}}} \right)^T},\) we obtain the following equations:
\[\left[ {\begin{array}{*{20}{c}}
{1 - 3}&2&{ - 3}\\
{ - 5}&{1 - 3}&{ - 4}\\
0&{ - 2}&{4 - 3}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{13}}}\\
{{V_{23}}}\\
{{V_{33}}}
\end{array}} \right] = 0,\;\; \Rightarrow
\left[ {\begin{array}{*{20}{c}}
{ - 2}&2&{ - 3}\\
{ - 5}&{ - 2}&{ - 4}\\
0&{ - 2}&1
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{13}}}\\
{{V_{23}}}\\
{{V_{33}}}
\end{array}} \right] = 0,\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{l}}
{ - 2{V_{13}} + 2{V_{23}} - 3{V_{33}} = 0}\\
{ - 5{V_{13}} - 2{V_{23}} - 4{V_{33}} = 0}\\
{ - 2{V_{23}} + {V_{33}} = 0}
\end{array}} \right..\]
We choose \({V_{33}} = t\) as the free variable. From the last equation we express \({V_{23}}:\)
\[2{V_{23}} = - {V_{33}} = - t,\;\; \Rightarrow
{V_{23}} = - \frac{t}{2}.\]
Substituting \({V_{23}},\) \({V_{33}}\) in the first equation, we get:
\[- 2{V_{13}} = - 2{V_{23}} + 3{V_{33}}
= - 2\left( { - \frac{t}{2}} \right) + 3t = 4t,\;\; \Rightarrow
\Rightarrow {V_{13}} = - 2t.\]
Thus, the eigenvector ({\mathbf{V}_3}) has coordinates
\[{\mathbf{V}_3} = \left[ {\begin{array}{*{20}{c}}
{{V_{13}}}\\
{{V_{23}}}\\
{{V_{33}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{ - 2t}\\
{ - \frac{t}{2}}\\
t
\end{array}} \right]
\sim t\left[ {\begin{array}{*{20}{c}}
{ - 4}\\
{ - 1}\\
2
\end{array}} \right]
\sim \left[ {\begin{array}{*{20}{c}}
{ - 4}\\
{ - 1}\\
2
\end{array}} \right].\]
The general solution can be written as
\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right]
= {C_1}{e^t}\left[ {\begin{array}{*{20}{c}}
8\\
{15}\\
{10}
\end{array}} \right]
+ {C_2}{e^{2t}}\left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1\\
1
\end{array}} \right]
+ {C_3}{e^{3t}}\left[ {\begin{array}{*{20}{c}}
{ - 4}\\
{ - 1}\\
2
\end{array}} \right],\]
where \({C_1},\) \({C_2},\) \({C_3}\) are arbitrary constants.
Example 5.
Find the general solution of the system
\[\frac{{dx}}{{dt}} = - x - 4y + 2z,\; \frac{{dy}}{{dt}} = 3x + y - 2z,\; \frac{{dz}}{{dt}} = x - 4y + z.\]
Solution.
Let's start with finding the eigenvalues of the matrix \(A:\)
\[\det \left( {A - \lambda I} \right) =
\left| {\begin{array}{*{20}{c}}
{ - 1 - \lambda }&{ - 4}&2\\
3&{1 - \lambda }&{ - 2}\\
1&{ - 4}&{1 - \lambda }
\end{array}} \right| = 0,\]
\[
\Rightarrow \left( { - 1 - \lambda } \right)\left[ {{{\left( {1 - \lambda } \right)}^2} - 8} \right]
- 3\left[ { - 4\left( {1 - \lambda } \right) + 8} \right]
+ \left[ {8 - 2\left( {1 - \lambda } \right)} \right] = 0,
\]
\[
\Rightarrow \left( { - 1 - \lambda } \right)\left( {{\lambda ^2} - 2\lambda - 7} \right)
- 3\left( {4\lambda + 4} \right) + \left( {2\lambda + 6} \right) = 0,
\]
\[
\Rightarrow - {\color{blue}{\lambda ^2}} + \color{red}{2\lambda} + \color{green}{7} - \color{black}{\lambda ^3}
+ \color{blue}{2{\lambda ^2}} + \color{red}{7\lambda}
- \color{red}{12\lambda} - \color{green}{12}
+ \color{red}{2\lambda} + \color{green}{6} = \color{black}0,
\]
\[
\Rightarrow - {\lambda ^3} + \color{blue}{\lambda ^2} - \color{red}{\lambda} + \color{green}{1} = \color{black}0\;\;\;
\text{or}\;\;\;{\lambda ^3} - {\lambda ^2} + \lambda - 1 = 0.
\]
Factoring the left side, we get
\[
{\lambda ^2}\left( {\lambda - 1} \right) + \lambda - 1 = 0,\;\; \Rightarrow
\left( {\lambda - 1} \right)\left( {{\lambda ^2} + 1} \right) = 0.\]
It can be seen that the auxiliary equation has one real and two complex roots (as a pair of complex conjugate numbers):
\[{\lambda _1} = 1,\;\;\;{\lambda _{2,3}} = \pm i.\]
The eigenvector \({\mathbf{V}_1}\) for the eigenvalue \({\lambda_1} = 1\) can be found in the same way as in the previous example. The coordinates of \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}},{V_{31}}} \right)^T}\) are defined by the system of linear equations:
\[\left[ {\begin{array}{*{20}{c}}
{ - 1 - 1}&{ - 4}&2\\
3&{1 - 1}&{ - 2}\\
1&{ - 4}&{1 - 1}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right] = \mathbf{0}.\]
After multiplying we get:
\[
\left\{ \begin{array}{l}
- 2{V_{11}} - 4{V_{21}} + 2{V_{31}} = 0\\
3{V_{11}} - 2{V_{31}} = 0\\
{V_{11}} - 4{V_{21}} = 0
\end{array} \right.,\;\; \Rightarrow
\left\{ \begin{array}{l}
{V_{11}} + 2{V_{21}} - {V_{31}} = 0\\
3{V_{11}} - 2{V_{31}} = 0\\
{V_{11}} - 4{V_{21}} = 0
\end{array} \right.,\;\; \Rightarrow
\left\{ \begin{array}{l}
{V_{11}} + 2{V_{21}} - {V_{31}} = 0\\
- 6{V_{21}} + {V_{31}} = 0\\
- 6{V_{21}} + {V_{31}} = 0
\end{array} \right.,\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{c}}
{{V_{11}} + 2{V_{21}} - {V_{31}} = 0}\\
{ - 6{V_{21}} + {V_{31}} = 0}
\end{array}} \right..\]
We see that the rank of the system of equations is \(2.\) Therefore, we can choose one independent variable, which we take as \({V_{31}} = t.\) Express the other variables in \(t:\)
\[- 6{V_{21}} + t = 0,\;\; \Rightarrow {V_{21}} = \frac{t}{6},\;\; \Rightarrow {V_{11}} + 2 \cdot \frac{t}{6} - t = 0,\;\; \Rightarrow {V_{11}} = t - \frac{t}{3} = \frac{2}{3}t.\]
So the first eigenvector has coordinates
\[
{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{\frac{2}{3}t}\\
{\frac{1}{6}t}\\
t
\end{array}} \right]
\sim t\left[ {\begin{array}{*{20}{c}}
4\\
1\\
6
\end{array}} \right]
\sim \left[ {\begin{array}{*{20}{c}}
4\\
1\\
6
\end{array}} \right].\]
Consider now the pair of complex conjugate roots \({\lambda _{2,3}} = \pm i.\) To find the part of the general solution associated with this pair of roots it is sufficient to take only one number, for example, \({\lambda _2} = + i\) and find for it the eigenvector \({\mathbf{V}_2},\) which can have complex coordinates. Next, we construct the particular solution \({\mathbf{X}_2}\) of the form
\[{\mathbf{X}_2}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y
\end{array}} \right] \sim {e^{{\lambda _2}t}}{\mathbf{V}_2}\]
and identify the real and imaginary parts, which will represent two linearly independent solutions. By implementing this plan, we write the matrix-vector equation for the vector \({\mathbf{V}_2}:\)
\[\left[ {\begin{array}{*{20}{c}}
{ - 1 - i}&{ - 4}&2\\
3&{1 - i}&{ - 2}\\
1&{ - 4}&{1 - i}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{12}}}\\
{{V_{22}}}\\
{{V_{32}}}
\end{array}} \right] = \mathbf{0}.\]
We get the following system of equations:
\[\left\{ \begin{array}{l}
- \left( {1 + i} \right){V_{12}} - 4{V_{22}} + 2{V_{32}} = 0\\
3{V_{12}} + \left( {1 - i} \right){V_{22}} - 2{V_{32}} = 0\\
{V_{12}} - 4{V_{22}} + \left( {1 - i} \right){V_{32}} = 0
\end{array} \right..\]
Transform the first equation into a more convenient form, multiplying it by \( - {\frac{1}{{1 + i}}} :\)
\[ - \left( {1 + i} \right){V_{12}} - 4{V_{22}} + 2{V_{32}} = 0\; \Rightarrow {V_{12}} + \frac{4}{{1 + i}}{V_{22}} - \frac{2}{{1 + i}}{V_{32}} = 0.\]
Get rid of the complex numbers in the denominators of the coefficients:
\[
\frac{4}{{1 + i}} = \frac{{4\left( {1 - i} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}}
= \frac{{4 - 4i}}{{1 - {i^2}}}
= \frac{{4 - 4i}}{2} = 2 - 2i,\;\;\;
- \frac{2}{{1 + i}} = - 1 + i.
\]
Then the first equation becomes:
\[{V_{12}} + 2\left( {1 - i} \right){V_{22}} - \left( {1 - i} \right){V_{32}} = 0.\]
Let's go back to the system of equations and reduce it to a triangular form to determine its rank:
\[\left\{ \begin{array}{l}
{V_{12}} + 2\left( {1 - i} \right){V_{22}} - \left( {1 - i} \right){V_{32}} = 0\\
3{V_{12}} + \left( {1 - i} \right){V_{22}} - 2{V_{32}} = 0\\
{V_{12}} - 4{V_{22}} + \left( {1 - i} \right){V_{32}} = 0
\end{array} \right.,\;
\left\{ \begin{array}{l}
{V_{12}} + \left( {2 - 2i} \right){V_{22}} + \left( { - 1 + i} \right){V_{32}} = 0\\
\left( { - 5 + 5i} \right){V_{22}} + \left( {1 - 3i} \right){V_{32}} = 0\\
\left( { - 6 + 2i} \right){V_{22}} + \left( {2 - 2i} \right){V_{32}} = 0
\end{array} \right..
\]
Transform the second equation:
\[\left. {\left( { - 5 + 5i} \right){V_{22}} + \left( {1 - 3i} \right){V_{32}} = 0\;} \right| \cdot \left( {\frac{1}{{ - 5 + 5i}}} \right),\;\; \Rightarrow {V_{22}} + \frac{{1 - 3i}}{{ - 5 + 5i}}{V_{32}} = 0.\]
Here the coefficient of the variable \({V_{32}}\) is
\[\frac{{1 - 3i}}{{ - 5 + 5i}} = \frac{{1 - 3i}}{{ - 5\left( {1 - i} \right)}} = \frac{{\left( {1 - 3i} \right)\left( {1 + i} \right)}}{{\left( { - 5} \right)\left( {1 - i} \right)\left( {1 + i} \right)}} = \frac{{1 - 3i + i - 3{i^2}}}{{\left( { - 5} \right)\left( {1 - {i^2}} \right)}} = \frac{{4 - 2i}}{{\left( { - 5} \right) \cdot 2}} = \frac{{2 - i}}{{\left( { - 5} \right)}} = \frac{{ - 2 + i}}{5}.\]
Hence, the second equation is
\[{V_{22}} + \frac{{ - 2 + i}}{5}{V_{32}} = 0.\]
Similarly, we transform the third equation:
\[
\left. {\left( { - 6 + 2i} \right){V_{22}} + \left( {2 - 2i} \right){V_{32}} = 0\;} \right|:2,\;\;\Rightarrow
\left. {\left( { - 3 + i} \right){V_{22}} + \left( {1 - i} \right){V_{32}} = 0\;} \right| \left( {\frac{1}{{ - 3 + i}}} \right),\;\; \Rightarrow
{V_{22}} + \frac{{1 - i}}{{ - 3 + i}}{V_{32}} = 0.
\]
Calculate the coefficient of \({V_{32}}:\)
\[\frac{{1 - i}}{{ - 3 + i}} = \frac{{\left( {1 - i} \right)\left( { - 3 - i} \right)}}{{\left( { - 3 + i} \right)\left( { - 3 - i} \right)}} = \frac{{ - 3 + 3i - i + {i^2}}}{{9 - {i^2}}} = \frac{{ - 4 + 2i}}{{9 + 1}} = \frac{{ - 4 + 2i}}{{10}} = \frac{{ - 2 + i}}{5}.\]
Then the third equation can be written as
\[{V_{22}} + \frac{{ - 2 + i}}{5}{V_{32}} = 0,\]
that is, it coincides with the second equation.
So, the rank of the system is \(2,\) and it can be written in the following equivalent form:
\[\left\{ \begin{array}{l}
{V_{12}} + \left( {2 - 2i} \right){V_{22}} - \left( {1 - i} \right){V_{32}} = 0\\
{V_{22}} + \frac{{ - 2 + i}}{5}{V_{32}} = 0
\end{array} \right..\]
We take as an independent variable \({V_{32}} = t.\) The other variables \({V_{22}}\) and \({V_{12}}\) can be successively expressed in terms of \(t:\)
\[
{V_{22}} + \frac{{ - 2 + i}}{5}t = 0,\;\; \Rightarrow
{V_{22}} = - \left( {\frac{{ - 2 + i}}{5}} \right)t = \frac{{2 - i}}{5}t,\;\; \Rightarrow
{V_{12}} + \left( {2 - 2i} \right)\left( {\frac{{2 - i}}{5}t} \right) - \left( {1 - i} \right)t = 0,\;\; \Rightarrow
{V_{12}} = \left( {1 - i} \right)t - \frac{{\left( {2 - 2i} \right)\left( {2 - i} \right)}}{5}t
= \left( {1 - i - \frac{{4 - 4i - 2i + 2{i^2}}}{5}} \right)t
= \left( {1 - i - \frac{{2 - 6i}}{5}} \right)t
= \frac{{5 - 5i - 2 + 6i}}{5}t
= \frac{{3 + i}}{5}t.
\]
Thus, we determined the eigenvector \({\mathbf{V}_2}\) with complex coordinates:
\[
{\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}}
{{V_{12}}}\\
{{V_{22}}}\\
{{V_{32}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{\frac{{3 + i}}{5}t}\\
{\frac{{2 - i}}{5}t}\\
t
\end{array}} \right]
\sim t\left[ {\begin{array}{*{20}{c}}
{3 + i}\\
{2 - i}\\
5
\end{array}} \right]
\sim \left[ {\begin{array}{*{20}{c}}
{3 + i}\\
{2 - i}\\
5
\end{array}} \right].
\]
Now we construct the solution \({\mathbf{X}_2}\) on the basis of eigenvalue \({\lambda_2}\) and eigenvector \({\mathbf{V}_2}\) and expand it into real and imaginary parts.
\[
{\mathbf{X}_2}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right]
= {e^{{\lambda _2}t}}{\mathbf{V}_2}
= {e^{it}}\left[ {\begin{array}{*{20}{c}}
{3 + i}\\
{2 - i}\\
5
\end{array}} \right].
\]
Represent \({e^{it}}\) by Euler's formula:
\[{e^{it}} = \cos t + i\sin t.\]
Hence,
\[
{\mathbf{X}_2}\left( t \right) = \left( {\cos t + i\sin t} \right)\left[ {\begin{array}{*{20}{c}}
{3 + i}\\
{2 - i}\\
5
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{\left( {3 + i} \right)\left( {\cos t + i\sin t} \right)}\\
{\left( {2 - i} \right)\left( {\cos t + i\sin t} \right)}\\
{5\left( {\cos t + i\sin t} \right)}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{3 + i\cos t + 3i\sin t - \sin t}\\
{2 - i\cos t + 2i\sin t + \sin t}\\
{5\cos t + 5i\sin t}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
{3 - \sin t}\\
{2 + \sin t}\\
{5\cos t}
\end{array}} \right] + i\left[ {\begin{array}{*{20}{c}}
{\cos t + 3\sin t}\\
{ - \cos t + 2\sin t}\\
{5\sin t}
\end{array}} \right].
\]
The calculated real and imaginary parts of the complex vector solution \({\mathbf{X}_2}\) are linearly independent. Taking into account the first component \({\mathbf{X}_1}\) corresponding to the eigenvalue \({\lambda_1},\) we can write the general real solution of the system as
\[
\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right]
= {C_1}{e^t}\left[ {\begin{array}{*{20}{c}}
4\\
1\\
6
\end{array}} \right]
+ {C_2}\left[ {\begin{array}{*{20}{c}}
{3 - \sin t}\\
{2 + \sin t}\\
{5\cos t}
\end{array}} \right]
+ {C_3}\left[ {\begin{array}{*{20}{c}}
{\cos t + 3\sin t}\\
{ - \cos t + 2\sin t}\\
{5\sin t}
\end{array}} \right],
\]
where \({C_1},\) \({C_2},\) \({C_3}\) are arbitrary numbers.
Example 6.
Find the general solution of the system of differential equations
\[\frac{{dx}}{{dt}} = 2x + y + z,\; \frac{{dy}}{{dt}} = x + 2y + z,\; \frac{{dz}}{{dt}} = x + y + 2z.\]
Solution.
Determine the eigenvalues of the given matrix:
\[
\det \left( {A - \lambda I} \right)
= \left| {\begin{array}{*{20}{c}}
{2 - \lambda }&1&1\\
1&{2 - \lambda }&1\\
1&1&{2 - \lambda }
\end{array}} \right| = 0,\;\; \Rightarrow
\left( {2 - \lambda } \right)\left[ {{{\left( {2 - \lambda } \right)}^2} - 1} \right]
- 1 \cdot \left[ {\left( {2 - \lambda } \right) - 1} \right]
+ 1 \cdot \left[ {1 - \left( {2 - \lambda } \right)} \right] = 0,\;\; \Rightarrow
\left( {2 - \lambda } \right)\left( {{\lambda ^2} - 4\lambda + 3} \right)
- \left( { - \lambda + 1} \right) + \left( {\lambda - 1} \right) = 0,\;\; \Rightarrow
\color{blue}{2{\lambda ^2}} - \color{red}{8\lambda} + \color{green}{6} - \color{black}{\lambda ^3} + \color{blue}{4{\lambda ^2}} - \color{red}{3\lambda} + \color{red}{2\lambda} - \color{green}{2} = \color{black}0,\;\; \Rightarrow
- {\lambda ^3} + \color{blue}{6{\lambda ^2}} - \color{red}{9\lambda} + \color{green}{4} = \color{black}0,\;\; \Rightarrow
{\lambda ^3} - 6{\lambda ^2} + 9\lambda - 4 = 0.
\]
It can be noted that the cubic equation has a root \(\lambda = 1.\) Factoring out the term \(\left( {\lambda - 1} \right),\) we obtain:
\[
{\lambda ^3} - {\lambda ^2} - 5{\lambda ^2} + 5\lambda + 4\lambda - 4 = 0,\;\; \Rightarrow
{\lambda ^2}\left( {\lambda - 1} \right) - 5\lambda \left( {\lambda - 1} \right) + 4\left( {\lambda - 1} \right) = 0,\;\; \Rightarrow
\left( {\lambda - 1} \right)\left( {{\lambda ^2} - 5\lambda + 4} \right) = 0.
\]
The roots of the quadratic equation are: \(\lambda = 1, 4.\) Thus, the auxiliary equation is represented as
\[{\left( {\lambda - 1} \right)^2}\left( {\lambda - 4} \right) = 0.\]
The initial matrix of the system is symmetric. So it will have three eigenvectors. This means that the algebraic and geometric multiplicity of the root \(\lambda = 1\) are the same (and equal to \(2\)).
Find the eigenvectors corresponding to the number \({\lambda _{1,2}} = 1.\) They can be found from the equations
\[
\left[ {\begin{array}{*{20}{c}}
{2 - 1}&1&1\\
1&{2 - 1}&1\\
1&1&{2 - 1}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{11}}}\\
{{V_{21}}}\\
{{V_{31}}}
\end{array}} \right] = \mathbf{0},\;\;\Rightarrow
\left\{ {\begin{array}{*{20}{c}}
{V_{11}} + {V_{21}} + {V_{31}} = 0\\
{V_{11}} + {V_{21}} + {V_{31}} = 0\\
{V_{11}} + {V_{21}} + {V_{31}} = 0
\end{array}} \right.,\;\; \Rightarrow
{V_{11}} + {V_{21}} + {V_{31}} = 0.
\]
We see that all three equations are identical. Leaving one equation, and choosing \({V_{21}} = u,\) \({V_{31}} = v\) as independent variables, we get:
\[{V_{11}} = - {V_{21}} - {V_{31}} = - u - v.\]
It follows that the coordinates of the first eigenvector (with \(u = 1, v = 0\)) are \({\mathbf{V}_1} = {\left( { - 1,1,0} \right)^T}.\)
Accordingly, the coordinates of the second linearly independent eigenvector (when \(u = 0, v = 1\)) are \({\mathbf{V}_2} = {\left( { - 1,0,1} \right)^T}.\)
Now we define the third eigenvector \({\mathbf{V}_3}\) corresponding to the number \({\lambda _3} = 4:\)
\[
\left[ {\begin{array}{*{20}{c}}
{2 - 4}&1&1\\
1&{2 - 4}&1\\
1&1&{2 - 4}
\end{array}} \right] \left[ {\begin{array}{*{20}{c}}
{{V_{13}}}\\
{{V_{23}}}\\
{{V_{33}}}
\end{array}} \right] = \mathbf{0},\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{l}}
{ - 2{V_{13}} + {V_{23}} + {V_{33}} = 0}\\
{{V_{13}} - 2{V_{23}} + {V_{33}} = 0}\\
{{V_{13}} + {V_{23}} - 2{V_{33}} = 0}
\end{array}} \right.,\;\; \Rightarrow
{\left\{ {\begin{array}{*{20}{l}}
{{V_{13}} - 2{V_{23}} + {V_{33}} = 0}\\
{{V_{13}} + {V_{23}} - 2{V_{33}} = 0}\\
{ - 2{V_{13}} + {V_{23}} + {V_{33}} = 0}
\end{array}} \right.},\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{l}}
{{V_{13}} - 2{V_{23}} + {V_{33}} = 0}\\
{0 + 3{V_{23}} - 3{V_{33}} = 0}\\
{0 - 3{V_{23}} + 3{V_{33}} = 0}
\end{array}} \right.,\;\; \Rightarrow
\left\{ {\begin{array}{*{20}{l}}
{{V_{13}} - 2{V_{23}} + {V_{33}} = 0}\\
{{V_{23}} - {V_{33}} = 0}
\end{array}.} \right.
\]
Here we choose as a free variable \({V_{33}} = t.\) The other two coordinates are
\[{V_{23}} = {V_{33}},\;\; \Rightarrow {V_{23}} = t,\;\; \Rightarrow {V_{13}} = 2{V_{23}} - {V_{33}} = 2t - t = t.\]
Hence, the eigenvector \({\mathbf{V}_3}\) has the following coordinates:
\[
{\mathbf{V}_3} = \left[ {\begin{array}{*{20}{c}}
{{V_{13}}}\\
{{V_{23}}}\\
{{V_{33}}}
\end{array}} \right]
= \left[ {\begin{array}{*{20}{c}}
t\\
t\\
t
\end{array}} \right]
= t\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1
\end{array}} \right]
\sim \left[ {\begin{array}{*{20}{c}}
1\\
1\\
1
\end{array}} \right].
\]
The general solution of the system of differential equations is given by
\[
\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}}
x\\
y\\
z
\end{array}} \right]
= {C_1}{e^t}\left[ {\begin{array}{*{20}{c}}
{ - 1}\\
1\\
0
\end{array}} \right]
+ {C_2}{e^t}\left[ {\begin{array}{*{20}{c}}
{ - 1}\\
0\\
1
\end{array}} \right]
+ {C_3}{e^{4t}}\left[ {\begin{array}{*{20}{c}}
1\\
1\\
1
\end{array}} \right],
\]
where \({C_1},\) \({C_2},\) \({C_3}\) are arbitrary constants.