Differential Equations

Systems of Equations

Systems Diff Equations Logo

Linear Systems of Differential Equations with Variable Coefficients

Solved Problems

Example 1.

Write the linear system of equations with the following solutions:

\[{\mathbf{x}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} 2\\ t \end{array}} \right],\; {\mathbf{x}_2}\left( t \right) = \left[ {\begin{array}{*{20}{c}} t\\ {{t^2}} \end{array}} \right],\; t \ne 0.\]

Solution.

In this problem the fundamental matrix of the system is known:

\[\Phi \left( t \right) = \left[ {\begin{array}{*{20}{c}} 2&t\\ t&{{t^2}} \end{array}} \right].\]

We compute the inverse matrix \({\Phi ^{ - 1}}\left( t \right):\)

\[\Delta \left( \Phi \right) = \left| {\begin{array}{*{20}{c}} 2&t\\ t&{{t^2}} \end{array}} \right| = 2{t^2} - {t^2} = {t^2},\;\; \Rightarrow {\Phi ^{ - 1}}\left( t \right) = \frac{1}{{\Delta \left( \Phi \right)}}C_{ij}^T = \frac{1}{{{t^2}}}{\left[ {\begin{array}{*{20}{c}} {{t^2}}&{ - t}\\ { - t}&2 \end{array}} \right]^T} = \frac{1}{{{t^2}}}\left[ {\begin{array}{*{20}{c}} {{t^2}}&{ - t}\\ { - t}&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - \frac{1}{t}}\\ { - \frac{1}{t}}&{\frac{2}{{{t^2}}}} \end{array}} \right].\]

Here \({C_{ij}}\) denote the cofactors of the corresponding elements of the fundamental matrix \(\Phi \left( t \right).\)

The coefficient matrix of the system of equations is given by

\[A\left( t \right) = \Phi'\left( t \right){\Phi ^{ - 1}}\left( t \right).\]

The derivative of the fundamental matrix (it is calculated element by element) is equal to

\[{\Phi'}\left( t \right) = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&{{2t}} \end{array}} \right].\]

Hence, we obtain:

\[ A\left( t \right) = \left[ {\begin{array}{*{20}{c}} 0&1\\ 1&{2t} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - \frac{1}{t}}\\ { - \frac{1}{t}}&{\frac{2}{{{t^2}}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {0 - \frac{1}{t}}&{0 + \frac{2}{{{t^2}}}}\\ {1 - 2}&{ - \frac{1}{t} + \frac{4}{t}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{t}}&{\frac{2}{{{t^2}}}}\\ { - 1}&{\frac{3}{t}} \end{array}} \right].\]

Thus, the system of equations whose solutions are \({\mathbf{x}_1}\left( t \right),\) \({\mathbf{x}_2}\left( t \right),\) can be written as

\[\frac{{dx}}{{dt}} = - \frac{x}{t} + \frac{{2y}}{{{t^2}}},\;\; \frac{{dy}}{{dt}} = - x + \frac{{3y}}{t}.\]

Example 2.

Find a fundamental matrix of the system of differential equations

\[\frac{{dx}}{{dt}} = x + ty,\; \frac{{dy}}{{dt}} = tx + y,\]

making sure that the coefficient matrix \(A\left( t \right)\) commutes with its integral.

Solution.

We first show that the multiplication of the matrix \(A\left( t \right)\) by its integral is commutative. The original matrix is

\[A\left( t \right) = \left[ {\begin{array}{*{20}{c}} 1&t\\ t&1 \end{array}} \right].\]

The integral of the matrix \(A\left( t \right)\) is found by elementwise integration. For simplicity, we take the lower boundary of integration to be zero. Then

\[\int\limits_0^t {A\left( \tau \right)d\tau } = \left[ {\begin{array}{*{20}{c}} t&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&t \end{array}} \right].\]

As a result, we have

\[A\left( t \right) \cdot \int\limits_0^t {A\left( \tau \right)d\tau } = \left[ {\begin{array}{*{20}{c}} 1&t\\ t&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} t&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&t \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {t + \frac{{{t^3}}}{2}}&{\frac{{{t^2}}}{2} + {t^2}}\\ {{t^2} + \frac{{{t^2}}}{2}}&{\frac{{{t^3}}}{2} + t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {t + \frac{{{t^3}}}{2}}&{\frac{{3{t^2}}}{2}}\\ {\frac{{3{t^2}}}{2}}&{t + \frac{{{t^3}}}{2}} \end{array}} \right],\]
\[\int\limits_0^t {A\left( \tau \right)d\tau } \cdot A\left( t \right) = \left[ {\begin{array}{*{20}{c}} t&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&t \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&t\\ t&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {t + \frac{{{t^3}}}{2}}&{{t^2} + \frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2} + {t^2}}&{\frac{{{t^3}}}{2} + t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {t + \frac{{{t^3}}}{2}}&{\frac{{3{t^2}}}{2}}\\ {\frac{{3{t^2}}}{2}}&{t + \frac{{{t^3}}}{2}} \end{array}} \right]. \]

So, the commutative property of the matrix product is true. Therefore, the fundamental matrix is given by

\[\Phi \left( t \right) = {e^{\,\int\limits_0^t {A\left( \tau \right)d\tau } }} = {e^{\left[ {\begin{array}{*{20}{c}} t&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&t \end{array}} \right]}}.\]

We compute the matrix exponential by converting the matrix to diagonal form. In this case, the eigenvalues depend on the variable \(t\) and can be expressed as follows:

\[\left| {\begin{array}{*{20}{c}} {t - \lambda }&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&{t - \lambda } \end{array}} \right| = 0,\;\; \Rightarrow {\left( {t - \lambda } \right)^2} - {\left( {\frac{{{t^2}}}{2}} \right)^2} = 0,\;\; \Rightarrow \left| {\lambda - t} \right| = \pm \frac{{{t^2}}}{2},\;\; \Rightarrow {\lambda _{1,2}} = t \pm \frac{{{t^2}}}{2}.\]

For each eigenvalue, we find the corresponding eigenvector. For \({\lambda _1}\) we obtain:

\[{\lambda _1} = t + \frac{{{t^2}}}{2},\;\; \Rightarrow \left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {t - \left( {t + \frac{{{t^2}}}{2}} \right)}&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&{t - \left( {t + \frac{{{t^2}}}{2}} \right)} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow - \frac{{{t^2}}}{2}{V_{11}} + \frac{{{t^2}}}{2}{V_{21}} = 0,\;\; \Rightarrow {\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right].\]

Similarly, we find the eigenvector \({\mathbf{V}_2} = {\left( {{V_{12}},{V_{22}}} \right)^T}\) for the eigenvalue \({\lambda _2}:\)

\[{\lambda _2} = t - \frac{{{t^2}}}{2},\;\; \Rightarrow \left( {A - {\lambda _2}I} \right){\mathbf{V}_2} = \mathbf{0},\;\Rightarrow \left[ {\begin{array}{*{20}{c}} {t - \left( {t - \frac{{{t^2}}}{2}} \right)}&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&{t - \left( {t - \frac{{{t^2}}}{2}} \right)} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow \frac{{{t^2}}}{2}{V_{12}} + \frac{{{t^2}}}{2}{V_{22}} = 0,\;\; \Rightarrow {\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {-1}\\ 1 \end{array}} \right].\]

Then the matrix of reduction to diagonal form (more precisely to Jordan form) is given by

\[H = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}\\ 1&1 \end{array}} \right].\]

We compute the inverse matrix \({H^{ - 1}}:\)

\[\Delta \left( H \right) = \left| {\begin{array}{*{20}{r}} 1&{ - 1}\\ 1&1 \end{array}} \right| = 1 + 1 = 2,\;\; \Rightarrow {H^{ - 1}} = \frac{1}{{\Delta \left( H \right)}}H_{ij}^T = \frac{1}{2}{\left[ {\begin{array}{*{20}{r}} 1&{ - 1}\\ 1&1 \end{array}} \right]^T} = \frac{1}{2}\left[ {\begin{array}{*{20}{r}} 1&1\\ { - 1}&1 \end{array}} \right].\]

Hence, the Jordan form \(J\) is as follows:

\[J = {H^{ - 1}}\left[ {\int\limits_0^t {A\left( \tau \right)d\tau } } \right]H = \frac{1}{2}\left[ {\begin{array}{*{20}{r}} 1&1\\ { - 1}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} t&{\frac{{{t^2}}}{2}}\\ {\frac{{{t^2}}}{2}}&t \end{array}} \right] \left[ {\begin{array}{*{20}{r}} 1&{ - 1}\\ 1&1 \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {t + \frac{{{t^2}}}{2}}&{\frac{{{t^2}}}{2} + t}\\ { - t + \frac{{{t^2}}}{2}}&{ - \frac{{{t^2}}}{2} + t} \end{array}} \right] \left[ {\begin{array}{*{20}{r}} 1&{ - 1}\\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} \color{blue}{t + \frac{{{t^2}}}{2}}&0\\ 0&\color{red}{t - \frac{{{t^2}}}{2}} \end{array}} \right].\]

The exponential of the matrix \(J\) is given by

\[ {e^J} = \left[ {\begin{array}{*{20}{c}} {{e^{t + \frac{{{t^2}}}{2}}}}&0\\ 0&{{e^{t - \frac{{{t^2}}}{2}}}} \end{array}} \right] = {e^t}\left[ {\begin{array}{*{20}{c}} {{e^{\frac{{{t^2}}}{2}}}}&0\\ 0&{{e^{ - \frac{{{t^2}}}{2}}}} \end{array}} \right].\]

We can now calculate the fundamental matrix \(\Phi \left( t \right):\)

\[\Phi \left( t \right) = {e^{\,\int\limits_0^t {A\left( \tau \right)d\tau } }} = H{e^J}{H^{ - 1}} = \left[ {\begin{array}{*{20}{r}} 1&{ - 1}\\ 1&1 \end{array}} \right] \cdot {e^t}\left[ {\begin{array}{*{20}{c}} {{e^{\frac{{{t^2}}}{2}}}}&0\\ 0&{{e^{ - \frac{{{t^2}}}{2}}}} \end{array}} \right] \cdot \frac{1}{2}\left[ {\begin{array}{*{20}{r}} 1&1\\ { - 1}&1 \end{array}} \right] = \frac{{{e^t}}}{2}\left[ {\begin{array}{*{20}{c}} {{e^{\frac{{{t^2}}}{2}}} + 0}&{0 - {e^{ - \frac{{{t^2}}}{2}}}}\\ {{e^{\frac{{{t^2}}}{2}}} + 0}&{0 + {e^{ - \frac{{{t^2}}}{2}}}} \end{array}} \right] \left[ {\begin{array}{*{20}{r}} 1&1\\ { - 1}&1 \end{array}} \right] = \frac{{{e^t}}}{2}\left[ {\begin{array}{*{20}{c}} {{e^{\frac{{{t^2}}}{2}}}}&{ - {e^{ - \frac{{{t^2}}}{2}}}}\\ {{e^{\frac{{{t^2}}}{2}}}}&{{e^{ - \frac{{{t^2}}}{2}}}} \end{array}} \right] \left[ {\begin{array}{*{20}{r}} 1&1\\ { - 1}&1 \end{array}} \right] = \frac{{{e^t}}}{2}\left[ {\begin{array}{*{20}{c}} {{e^{\frac{{{t^2}}}{2}}} + {e^{ - \frac{{{t^2}}}{2}}}}&{{e^{\frac{{{t^2}}}{2}}} - {e^{ - \frac{{{t^2}}}{2}}}}\\ {{e^{\frac{{{t^2}}}{2}}} - {e^{ - \frac{{{t^2}}}{2}}}}&{{e^{\frac{{{t^2}}}{2}}} + {e^{ - \frac{{{t^2}}}{2}}}} \end{array}} \right] = {e^t}\left[ {\begin{array}{*{20}{c}} {\cosh \frac{{{t^2}}}{2}}&{\sinh\frac{{{t^2}}}{2}}\\ {\sinh\frac{{{t^2}}}{2}}&{\cosh \frac{{{t^2}}}{2}} \end{array}} \right].\]

Example 3.

Find the general solution of the system

\[\frac{{dx}}{{dt}} = - tx + y,\; \frac{{dy}}{{dt}} = \left( {1 - {t^2}} \right)x + ty,\; x \gt 0,\]

if one solution is known: \[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1\\ t \end{array}} \right].\]

Solution.

Let the second linearly independent solution be expressed by the vector function

\[{\mathbf{X}_2}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_2}\left( t \right)}\\ {{y_2}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} u\\ v \end{array}} \right]\]

with the initial condition \(u\left( {t = 0} \right) = 0,\) \(v\left( {t = 0} \right) = 1.\)

We then use Liouville's formula, which is written as

\[W\left( t \right) = \left| {\begin{array}{*{20}{c}} 1&u\\ t&v \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&0\\ 0&1 \end{array}} \right|{e^{\int\limits_0^t {A\left( \tau \right)d\tau } }} = 1 \cdot {e^{\int\limits_0^t {\left( { - \tau + \tau } \right)d\tau } }} = {e^{\int\limits_0^t {0d\tau } }} = {e^0} = 1.\]

Hence we obtain the relation between the unknown functions \(u\) and \(v:\)

\[v - tu = 1.\]

Consider the second equation of the original system. Substituting the solution \({\mathbf{X}_2}\left( t \right),\) we write it in the form of

\[\frac{{dv}}{{dt}} = \left( {1 - {t^2}} \right)u + tv.\]

From the previous equation, we can express the term \(tv:\)

\[v - tu = 1,\;\; \Rightarrow tv - {t^2}u = t,\;\; \Rightarrow tv = {t^2}u + t.\]

Substitute it into the differential equation for the function \(v\left( t \right):\)

\[\frac{{dv}}{{dt}} = \left( {1 - {t^2}} \right)u + tv,\;\; \Rightarrow \frac{{dv}}{{dt}} = \left( {1 - {t^2}} \right)u + {t^2}u + t,\;\; \Rightarrow \frac{{dv}}{{dt}} = u - \cancel{{t^2}u} + \cancel{{t^2}u} + t,\;\; \Rightarrow \frac{{dv}}{{dt}} = u + t,\;\; \Rightarrow t\frac{{dv}}{{dt}} = tu + {t^2}.\]

Given that \(tu = v - 1,\) we obtain a first order linear equation for the function \(v\left( t \right):\)

\[t\frac{{dv}}{{dt}} = v - 1 + {t^2}\;\;\text{or}\;\; t\frac{{dv}}{{dt}} = v + {t^2} - 1.\]

We first find the solution of the corresponding homogeneous equation.

\[t\frac{{dv}}{{dt}} = v,\;\; \Rightarrow \frac{{dv}}{v} = \frac{{dt}}{t},\;\; \Rightarrow \int {\frac{{dv}}{v}} = \int {\frac{{dt}}{t}} ,\;\; \Rightarrow \ln \left| v \right| = \ln \left| t \right| + \ln C,\;\; \Rightarrow {v_0}\left( t \right) = Ct,\]

where \(C\) is an arbitrary number.

Now we determine the solution of the nonhomogeneous equation, using the method of variation of parameters:

\[v\left( t \right) = C\left( t \right)t,\;\; \Rightarrow \frac{{dv\left( t \right)}}{{dt}} = \frac{{dC\left( t \right)}}{{dt}}t + C\left( t \right).\]

After substitution we get the expression for the derivative \({\frac{{dC}}{{dt}}}:\)

\[t\left( {t\frac{{dC}}{{dt}} + C} \right) = Ct + {t^2} - 1,\;\; \Rightarrow {t^2}\frac{{dC}}{{dt}} + \cancel{Ct} = \cancel{Ct} + {t^2} - 1,\;\; \Rightarrow \frac{{dC}}{{dt}} = \frac{{{t^2} - 1}}{{{t^2}}} = 1 - \frac{1}{{{t^2}}}.\]

Integrating, we find the function \(C\left( t \right):\)

\[C\left( t \right) = \int {\left( {1 - \frac{1}{{{t^2}}}} \right)dt} = t + \frac{1}{t}.\]

Then the function \(v\left( t \right)\) will be expressed by the formula

\[v\left( t \right) = C\left( t \right)t = {t^2} + 1.\]

Now, it is easy to find the function \(u\left( t \right):\)

\[v - tu = 1,\;\; \Rightarrow tu = v - 1,\;\; \Rightarrow tu = {t^2} + \cancel{1} - \cancel{1},\;\; \Rightarrow u\left( t \right) = t.\]

So the second solution of the system is

\[{\mathbf{X}_2}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_2}\left( t \right)}\\ {{y_2}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} u\\ v \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} t\\ {{t^2} + 1} \end{array}} \right].\]

The general solution is written as

\[\mathbf{X}\left( t \right) = {C_1}{\mathbf{X}_1}\left( t \right) + {C_2}{\mathbf{X}_2}\left( t \right) = {C_1}\left[ {\begin{array}{*{20}{c}} 1\\ t \end{array}} \right] + {C_2}\left[ {\begin{array}{*{20}{c}} t\\ {{t^2} + 1} \end{array}} \right],\]

where \({C_1},{C_2}\) are arbitrary constants.

Page 1 Page 2