Differential Equations

Systems of Equations

Systems Diff Equations Logo

Linear Nonhomogeneous Systems of Differential Equations with Constant Coefficients

Solved Problems

Example 1.

Solve the system of equations by elimination:

\[x' = x + 2y + {e^{ - 2t}},\; y' = 4x - y.\]

Solution.

We differentiate the first equation and substitute into it the derivative \(y'\) from the second equation:

\[x^{\prime\prime} = x' + 2y' - 2{e^{ - 2t}},\;\; \Rightarrow x^{\prime\prime} = x' + 2\left( {4x - y} \right) - 2{e^{ - 2t}},\;\; \Rightarrow x^{\prime\prime} = x' + 8x - 2y - 2{e^{ - 2t}}.\]

We can solve the first equation for \(2y\) and substitute in the last equation:

\[2y = x' - x - {e^{ - 2t}},\;\; \Rightarrow x^{\prime\prime} = x' + 8x - \left( {x' - x - {e^{ - 2t}}} \right) - 2{e^{ - 2t}},\;\; \Rightarrow x^{\prime\prime} = x' + 8x - x' + x + {e^{ - 2t}} - 2{e^{ - 2t}},\;\; \Rightarrow x^{\prime\prime} - 9x = - {e^{ - 2t}}.\]

We have a second order linear homogeneous equation for the function \(x\left( t \right).\)

First solve the homogeneous equation

\[x^{\prime\prime} - 9x = 0.\]

The roots of the auxiliary equation are

\[{\lambda ^2} - 9 = 0,\;\; \Rightarrow {\lambda _{1,2}} = \pm 3.\]

Then the solution of the homogeneous equation for \(x\left( t \right)\) is as follows:

\[{x_0}\left( t \right) = {C_1}{e^{3t}} + {C_2}{e^{ - 3t}},\]

where \({C_1},\) \({C_2}\) are arbitrary numbers.

By virtue of the form of the inhomogeneous term in the equation for \(x\left( t \right),\) we seek a particular solution \({x_1}\left( t \right)\) in the form

\[{x_1}\left( t \right) = A{e^{ - 2t}}.\]

Substituting this trial solution into the nonhomogeneous differential equation, we determine the coefficient \(A:\)

\[{\left( { - 2} \right)^2}A{e^{ - 2t}} - 9A{e^{ - 2t}} = - {e^{ - 2t}},\;\; \Rightarrow 4A - 9A = - 1,\;\; \Rightarrow 5A = 1,\;\; \Rightarrow A = \frac{1}{5}.\]

Hence, a particular solution \({x_1}\left( t \right)\) is given by

\[{x_1}\left( t \right) = \frac{1}{5}{e^{ - 2t}}.\]

Accordingly, the general solution for the function \(x\left( t \right)\) is written as

\[x\left( t \right) = {x_0}\left( t \right) + {x_1}\left( t \right) = {C_1}{e^{3t}} + {C_2}{e^{ - 3t}} + \frac{1}{5}{e^{ - 2t}}.\]

It remains to find the function \(y\left( t \right).\) We calculate the derivative \(x'\left( t \right)\) and substitute it into the first equation of the original system:

\[x'\left( t \right) = 3{C_1}{e^{3t}} - 3{C_2}{e^{ - 3t}} - \frac{2}{5}{e^{ - 2t}},\;\; \Rightarrow 3{C_1}{e^{3t}} - 3{C_2}{e^{ - 3t}} - \frac{2}{5}{e^{ - 2t}} = {C_1}{e^{3t}} + {C_2}{e^{ - 3t}} + \frac{1}{5}{e^{ - 2t}} + 2y + {e^{ - 2t}},\;\; \Rightarrow 2y = 2{C_1}{e^{3t}} - 4{C_2}{e^{ - 3t}} - \frac{8}{5}{e^{ - 2t}},\;\; \Rightarrow y\left( t \right) = {C_1}{e^{3t}} - 2{C_2}{e^{ - 3t}} - \frac{4}{{5}}{e^{ - 2t}}.\]

The final answer is written as follows:

\[\left\{ \begin{array}{l} {x\left( t \right) = {C_1}{e^{3t}} + {C_2}{e^{ - 3t}} + \frac{1}{5}{e^{ - 2t}} }\\ {y\left( t \right) = {C_1}{e^{3t}} - 2{C_2}{e^{ - 3t}} - \frac{4}{{5}}{e^{ - 2t}} }\end{array} \right..\]

Example 2.

Solve the system of equations by the method of undetermined coefficients:

\[\frac{{dx}}{{dt}} = 2x + y,\; \frac{{dy}}{{dt}} = 3y + t{e^t}.\]

Solution.

We write this system in matrix form:

\[\mathbf{X}'\left( t \right) = A\mathbf{X}\left( t \right) + \mathbf{f}\left( t \right),\;\; \text{where}\;\;\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {x\left( t \right)}\\ {y\left( t \right)} \end{array}} \right],\;\; A = \left[ {\begin{array}{*{20}{c}} 2&1\\ 0&3 \end{array}} \right],\;\; \mathbf{f}\left( t \right) = \left[ {\begin{array}{*{20}{c}} 0\\ {t{e^t}} \end{array}} \right].\]

We first find the solution of the homogeneous system. Calculate the eigenvalues of the matrix \(A:\)

\[\det \left( {A - \lambda I} \right) = \left| {\begin{array}{*{20}{c}} {2 - \lambda }&1\\ 0&{3 - \lambda } \end{array}} \right| = 0,\;\; \Rightarrow \left( {2 - \lambda } \right)\left( {3 - \lambda } \right) = 0,\;\; \Rightarrow {\lambda _1} = 2,\;{\lambda _2} = 3.\]

Determine the eigenvector \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) for the value \({\lambda _1} = 2:\)

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {2 - 2}&1\\ 0&{3 - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} 0&1\\ 0&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow 0 \cdot {V_{11}} + 1 \cdot {V_{21}} = 0.\]

It is seen that \({V_{21}} = 0,\) and the coordinate \({V_{11}}\) can be arbitrary. For simplicity, we choose \({V_{11}} = 1.\) Therefore, \({\mathbf{V}_1} = {\left( {1,0} \right)^T}.\)

Similarly, we find the eigenvector \({\mathbf{V}_2} = {\left( {{V_{12}},{V_{22}}} \right)^T},\) corresponding to the eigenvalue \({\lambda _2} = 3:\)

\[\left( {A - {\lambda _2}I} \right){\mathbf{V}_2} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {2 - 3}&1\\ 0&{3 - 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{r}} {-1}&1\\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow -{V_{12}} + {V_{22}} = 0.\]

Putting \({V_{22}} = t,\) we have: \({V_{12}} = {V_{22}} = t.\) Then

\[{\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} t\\ t \end{array}} \right] = t\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right].\]

Thus, the general solution of the homogeneous system is given by

\[{\mathbf{X}_0}\left( t \right) = \left[ {\begin{array}{*{20}{c}} x\\ y \end{array}} \right] = {C_1}{e^{{\lambda _1}t}}{\mathbf{V}_1} + {C_2}{e^{{\lambda _2}t}}{\mathbf{V}_2} = {C_1}{e^{2t}}\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] + {C_2}{e^{3t}}\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right].\]

Now we find a particular solution \({\mathbf{X}_1}\left( t \right).\) The inhomogeneous term has the form of a quasi-polynomial \({\mathbf{P}_1}\left( t \right){e^t}.\) The degree of the exponential function is \(\alpha = 1.\) Because it does not coincide with any of the eigenvalues \({\lambda _1} = 2,\) \({\lambda _2} = 3,\) then we find a particular solution in a form similar to \(\mathbf{f}\left( t \right),\) that is assume that

\[{\mathbf{X}_1}\left( t \right) = \left( {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right) = {\mathbf{P}_1}\left( t \right){e^t},\;\; \text{where}\;\; {\mathbf{P}_1}\left( t \right) = {\mathbf{A}_0} + {\mathbf{A}_1}t.\]

We find the unknown vectors \({\mathbf{A}_0},{\mathbf{A}_1}\) using the method of undetermined coefficients. Let

\[{\mathbf{A}_0} = \left[ {\begin{array}{*{20}{c}} {{a_0}}\\ {{b_0}} \end{array}} \right],\;\; {\mathbf{A}_1} = \left[ {\begin{array}{*{20}{c}} {{a_1}}\\ {{b_1}} \end{array}} \right].\]

Therefore, the particular solution can be written as

\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\left( {{a_0} + {a_1}t} \right){e^t}}\\ {\left( {{b_0} + {b_1}t} \right){e^t}} \end{array}} \right].\]

Substitute \({\mathbf{X}_1}\left( t \right)\) into the original nonhomogeneous equation:

\[{\mathbf{X'}_1}\left( t \right) = A{\mathbf{X}_1}\left( t \right) + \mathbf{f}\left( t \right),\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}{e^t} + \left( {{a_0} + {a_1}t} \right){e^t}}\\ {{b_1}{e^t} + \left( {{b_0} + {b_1}t} \right){e^t}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&1\\ 0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\left( {{a_0} + {a_1}t} \right){e^t}}\\ {\left( {{b_0} + {b_1}t} \right){e^t}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0\\ {t{e^t}} \end{array}} \right],\;\Rightarrow \left\{ {\begin{array}{*{20}{l}} {{\left( {{a_1} + {a_0} + {a_1}t} \right){e^t} = \left( {2{a_0} + 2{a_1}t} \right){e^t} + \left( {{b_0} + {b_1}t} \right){e^t}} }\\ {{\left( {{b_1} + {b_0} + {b_1}t} \right){e^t} = \left( {3{b_0} + 3{b_1}t} \right){e^t} + t{e^t}} } \end{array}} \right..\]

Divide both sides of each equation by \({{e^t}}:\)

\[\left\{ {\begin{array}{*{20}{l}} {{{a_1} + {a_0} + {a_1}t }={ 2{a_0} + 2{a_1}t + {b_0} + {b_1}t} }\\ {{{b_1} + {b_0} + {b_1}t }={ 3{b_0} + 3{b_1}t + t}} \end{array}} \right..\]

By equating the coefficients of like terms, we obtain the following system of equations:

\[\left\{ \begin{array}{l} {a_1} + {a_0} = 2{a_0} + {b_0}\\ {a_1} = 2{a_1} + {b_1}\\ {b_1} + {b_0} = 3{b_0}\\ {b_1} = 3{b_1} + 1 \end{array} \right.,\;\; \Rightarrow \left\{ \begin{array}{l} {a_1} = {a_0} + {b_0}\\ {a_1} + {b_1} = 0\\ {b_1} = 2{b_0}\\ 2{b_1} + 1 = 0 \end{array} \right..\]

Solve the system and find the unknown coefficients \({a_0},{a_1},{b_0},{b_1}:\)

\[{b_1} = - \frac{1}{2},\;\; {b_0} = \frac{{{b_1}}}{2} = - \frac{1}{4},\;\; {a_1} = - {b_1} = \frac{1}{2},\;\; {a_0} = {a_1} - {b_0} = \frac{1}{2} - \left( { - \frac{1}{4}} \right) = \frac{3}{4}.\]

Thus, a particular solution \({\mathbf{X}_1}\left( t \right)\) can be written as

\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = {\mathbf{P}_1}\left( t \right){e^t} = \left[ {\begin{array}{*{20}{c}} {{a_0} + {a_1}t}\\ {{b_0} + {b_1}t} \end{array}} \right]{e^t} = \left[ {\begin{array}{*{20}{c}} {\frac{3}{4} + \frac{1}{2}t}\\ { - \frac{1}{4} - \frac{1}{2}t} \end{array}} \right]{e^t} = \frac{1}{4}{e^t}\left[ {\begin{array}{*{20}{c}} {3 + 2t}\\ { - 1 - 2t} \end{array}} \right].\]

Then the general solution of the original nonhomogeneous system is given by the following formula:

\[\mathbf{X}\left( t \right) = {\mathbf{X}_0}\left( t \right) + {\mathbf{X}_1}\left( t \right) = {C_1}{e^{2t}}\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right] + {C_2}{e^{3t}}\left[ {\begin{array}{*{20}{c}} 1\\ 1 \end{array}} \right] + \frac{1}{4}{e^t}\left[ {\begin{array}{*{20}{c}} {3 + 2t}\\ { - 1 - 2t} \end{array}} \right].\]

Example 3.

Solve the system of equations by the method of undetermined coefficients:

\[\frac{{dx}}{{dt}} = x + {e^t},\; \frac{{dy}}{{dt}} = x + y - {e^t}.\]

Solution.

We calculate the eigenvalues \({\lambda _i}\) of the matrix \(A\) and construct the general solution of the associated homogeneous system:

\[A = \left[ {\begin{array}{*{20}{c}} 1&0\\ 1&1 \end{array}} \right],\;\; \Rightarrow \det \left( {A - \lambda I} \right) = \left| {\begin{array}{*{20}{c}} {1 - \lambda }&0\\ 1&{1 - \lambda } \end{array}} \right| = 0,\;\; \Rightarrow {\left( {1 - \lambda } \right)^2} = 0,\;\; \Rightarrow {\lambda _1} = 1.\]

So, here we have one eigenvalue \({\lambda _1} = 1\) of multiplicity \({k_1} = 2.\) Find the eigenvector \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) for \({\lambda _1} = 1:\)

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {1 - 1}&0\\ 1&{1 - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} 0&0\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow 1 \cdot {V_{11}} + 0 \cdot {V_{21}} = 0.\]

It is clear that \({V_{11}} = 0,\) and the coordinate \({V_{21}}\) can be arbitrary. By setting \({V_{21}} = 1,\) we obtain \({\mathbf{V}_1} = {\left( {0,1} \right)^T}.\)

We calculate the second linearly independent vector \({\mathbf{V}_2} = {\left( {{V_{12}},{V_{22}}} \right)^T}\) as a generalized eigenvector, connected to \({\mathbf{V}_1}:\)

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_2} = {\mathbf{V}_1},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} 0&0\\ 1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right],\;\; \Rightarrow 1 \cdot {V_{12}} + 0 \cdot {V_{22}} = 1.\]

Here \({V_{12}} = 1,\) and \({V_{22}}\) can be chosen arbitrarily, for example, \({V_{22}} = 0.\) Then \({\mathbf{V}_2} = {\left( {1,0} \right)^T}.\)

The general solution of the homogeneous system will be expressed by the formula

\[{\mathbf{X}_0}\left( t \right) = {C_1}{e^t}\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] + {C_2}{e^t}\left( {t\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right]} \right).\]

where \({C_1},{C_2}\) are arbitrary constants.

As you can see, the length of the Jordan chain for \({\lambda _1} = 1\) is equal to \(2.\)

We now turn to finding a particular solution \({\mathbf{X}_1}\left( t \right)\) of the nonhomogeneous equation. The inhomogeneous terms in each equation contain the exponential function \({e^t},\) which coincides with the exponential function in the solution of the homogeneous equation. This means that we have the resonance case.

Therefore, the particular solution \({\mathbf{X}_1}\left( t \right)\) should be sought in the form of a vector quasi-polynomial

\[{\mathbf{X}_1}\left( t \right) = {\mathbf{P}_{m + k}}\left( t \right){e^t},\]

where \(m = 0\) (\(m\) denotes the degree of the vector polynomial \(\mathbf{f}\left( t \right)\)) and \(k = 2\) (\(k\) is the length of the Jordan chain for the resonant eigenvalue \({\lambda _1} = 1\)).

So, in this case, we select the second degree polynomial:

\[{\mathbf{X}_1}\left( t \right) = {\mathbf{P}_2}\left( t \right){e^t} = \left( {{\mathbf{A}_0} + {\mathbf{A}_1}t + {\mathbf{A}_2}{t^2}} \right){e^t}.\]

The vector coefficients \({\mathbf{A}_0},{\mathbf{A}_1},{\mathbf{A}_2}\) can be found by direct substitution of the function \({\mathbf{X}_1}\left( t \right)\) into the nonhomogeneous system. Let

\[{\mathbf{A}_0} = \left[ {\begin{array}{*{20}{c}} {{a_0}}\\ {{b_0}} \end{array}} \right],\;\; {\mathbf{A}_1} = \left[ {\begin{array}{*{20}{c}} {{a_1}}\\ {{b_1}} \end{array}} \right],\;\; {\mathbf{A}_2} = \left[ {\begin{array}{*{20}{c}} {{a_2}}\\ {{b_2}} \end{array}} \right].\]

Then

\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\left( {{a_0} + {a_1}t + {a_2}{t^2}} \right){e^t}}\\ {\left( {{b_0} + {b_1}t + {b_2}{t^2}} \right){e^t}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_0} + {a_1}t + {a_2}{t^2}}\\ {{b_0} + {b_1}t + {b_2}{t^2}} \end{array}} \right]{e^t}.\]

The derivative is given by

\[{\mathbf{X'}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x'_1}\left( t \right)}\\ {{y'_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_0} + {a_1}t + {a_2}{t^2}}\\ {{b_0} + {b_1}t + {b_2}{t^2}} \end{array}} \right]{e^t} + \left[ {\begin{array}{*{20}{c}} {{a_1} + 2{a_2}t}\\ {{b_1} + 2{b_2}t} \end{array}} \right]{e^t} = \left[ {\begin{array}{*{20}{c}} {a_0} + {a_1} + \left( {{a_1} + 2{a_2}} \right)t + {a_2}{t^2}\\ {b_0} + {b_1} + \left( {{b_1} + 2{b_2}} \right)t + {b_2}{t^2} \end{array}} \right]{e^t}.\]

After the substitution in the original system, we obtain:

\[\left( {{a_0} + {a_1} + \left( {{a_1} + 2{a_2}} \right)t + {a_2}{t^2}} \right){e^t} = \left( {{a_0} + {a_1}t + {a_2}{t^2}} \right){e^t} + {e^t},\]
\[\left( {{b_0} + {b_1} + \left( {{b_1} + 2{b_2}} \right)t + {b_2}{t^2}} \right){e^t} = \left( {{a_0} + {a_1}t + {a_2}{t^2}} \right){e^t} + \left( {{b_0} + {b_1}t + {b_2}{t^2}} \right){e^t} - {e^t}.\]

Dividing both sides of each equation by \({e^t}\) and equating the coefficients of the terms with equal powers of \(t,\) we obtain the following system for the unknown coefficients:

\[\left\{ \begin{array}{l} {a_0} + {a_1} + \left( {{a_1} + 2{a_2}} \right)t + \cancel{{a_2}{t^2}} = {a_0} + {a_1}t + \cancel{{a_2}{t^2}} + 1\\ {b_0} + {b_1} + \left( {{b_1} + 2{b_2}} \right)t + \cancel{{b_2}{t^2}} = {a_0} + {a_1}t + {a_2}{t^2} + {b_0} + {b_1}t + \cancel{{b_2}{t^2}} - 1 \end{array} \right.,\]
\[\left\{ \begin{array}{l} \cancel{a_0} + {a_1} = \cancel{a_0} + 1\\ \cancel{a_1} + 2{a_2} = \cancel{a_1}\\ \cancel{a_2} = \cancel{a_2}\\ \cancel{b_0} + {b_1} = {a_0} + \cancel{b_0} - 1\\ \cancel{b_1} + 2{b_2} = {a_1} + \cancel{b_1}\\ \cancel{b_2} = {a_2} + \cancel{b_2} \end{array} \right.,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {{a_1} = 1}\\ {{a_2} = 0}\\ {{b_1} = {a_0} - 1}\\ {2{b_2} = {a_1}} \end{array}} \right..\]

There are only four independent equations here. The numbers \({a_0}\) and \({b_0}\) can be chosen arbitrarily, for example, \({a_0} = 0,\) \({b_0} = 0.\) As a result, the coefficients have the following values:

\[{a_0} = 0,\;\; {a_1} = 1,\;\; {a_2} = 0,\;\; {b_0} = 0,\;\; {b_1} = - 1,\;\; {b_2} = \frac{1}{2}.\]

Thus, a particular solution \({\mathbf{X}_1}\left( t \right)\) is given by

\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{a_0} + {a_1}t + {a_2}{t^2}}\\ {{b_0} + {b_1}t + {b_2}{t^2}} \end{array}} \right]{e^t} = \left[ {\begin{array}{*{20}{c}} t\\ {\frac{1}{2}{t^2} - t} \end{array}} \right]{e^t}.\]

Finally the general solution of the nonhomogeneous system is written as

\[ \mathbf{X}\left( t \right) = {\mathbf{X}_0}\left( t \right) + {\mathbf{X}_1}\left( t \right) = {C_1}{e^t}\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] + {C_2}{e^t}\left( {t\left[ {\begin{array}{*{20}{c}} 0\\ 1 \end{array}} \right] } + {\left[ {\begin{array}{*{20}{c}} 1\\ 0 \end{array}} \right]} \right) + {e^t}\left[ {\begin{array}{*{20}{c}} t\\ {\frac{1}{2}{t^2} - t} \end{array}} \right].\]

Example 4.

Solve the system of equations by the method of undetermined coefficients:

\[\frac{{dx}}{{dt}} = - y,\; \frac{{dy}}{{dt}} = x + \cos t.\]

Solution.

We first construct the general solution of the homogeneous system. The eigenvalues of the matrix \(A\) are

\[A = \left[ {\begin{array}{*{20}{r}} 0&{ - 1}\\ 1&0 \end{array}} \right],\;\; \Rightarrow \det \left( {A - \lambda I} \right) = \left| {\begin{array}{*{20}{r}} { - \lambda }&{ - 1}\\ 1&{ - \lambda } \end{array}} \right| = 0,\;\; \Rightarrow {\lambda ^2} + 1 = 0,\;\; \Rightarrow {\lambda ^2} = - 1,\;\; \Rightarrow {\lambda _{1,2}} = \pm i.\]

In this case, we have a pair of complex conjugate eigenvalues of multiplicity \(1.\) In accordance with the general theory, we find the complex solution, for example, for the eigenvalue \({\lambda _1} = + i,\) and then separate the real and imaginary parts, which form a fundamental system of solutions.

Determine the eigenvector \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) for the eigenvalue \({\lambda _1} = + i:\)

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} { - i}&{ - 1}\\ 1&{ - i} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow {V_{11}} - i{V_{21}} = 0.\]

Let \({V_{21}} = t.\) Then \({V_{11}} = i{V_{21}} = it.\) Hence,

\[{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {it}\\ t \end{array}} \right] = t\left[ {\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right].\]

The eigenvalue \({\lambda _1}\) and the eigenvector \({\mathbf{V}_1}\) form a complex solution of the type

\[{\mathbf{Z}_1}\left( t \right) = {e^{{\lambda _1}t}}{\mathbf{V}_1} = {e^{it}}\left[ {\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right] = \left( {\cos t + i\sin t} \right)\left[ {\begin{array}{*{20}{c}} i\\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {i\cos t - \sin t}\\ {\cos t + i\sin t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \sin t}\\ {\cos t} \end{array}} \right] + i\left[ {\begin{array}{*{20}{c}} {\cos t}\\ {\sin t} \end{array}} \right] = \text{Re}\left[ {{\mathbf{Z}_1}\left( t \right)} \right] + \text{Im}\left[ {{\mathbf{Z}_1}\left( t \right)} \right].\]

The general solution of the homogeneous system is written as

\[{\mathbf{X}_0}\left( t \right) = {C_1}\left[ {\begin{array}{*{20}{c}} { - \sin t}\\ {\cos t} \end{array}} \right] + {C_2}\left[ {\begin{array}{*{20}{c}} {\cos t}\\ {\sin t} \end{array}} \right],\]

where \({C_1},{C_2}\) are arbitrary numbers.

We now find a particular solution \({\mathbf{X}_1}\left( t \right)\) of the nonhomogeneous system. Here we meet again with the resonance case, since the inhomogeneous term

\[\mathbf{f}\left( t \right) = \left[ {\begin{array}{*{20}{c}} 0\\ {\cos t} \end{array}} \right]\]

is described by the complex number \(\gamma = \alpha + \beta i \) \(= + i\) and coincides with the eigenvalue \({\lambda _1} = +i\) of the matrix \(A.\) Hence, we seek the particular solution \({\mathbf{X}_1}\left( t \right)\) in the form

\[{\mathbf{X}_1}\left( t \right) = \left( {{\mathbf{A}_0} + {\mathbf{A}_1}t} \right)\cos t + \left( {{\mathbf{B}_0} + {\mathbf{B}_1}t} \right)\sin t.\]

Let the vectors \({\mathbf{A}_0},\) \({\mathbf{A}_1},\) \({\mathbf{B}_0},\) \({\mathbf{B}_1}\) have the following coordinates:

\[{\mathbf{A}_0} = \left[ {\begin{array}{*{20}{c}} {{a_0}}\\ {{b_0}} \end{array}} \right],\;\; {\mathbf{A}_1} = \left[ {\begin{array}{*{20}{c}} {{a_1}}\\ {{b_1}} \end{array}} \right],\;\; {\mathbf{B}_0} = \left[ {\begin{array}{*{20}{c}} {{c_0}}\\ {{d_0}} \end{array}} \right],\;\; {\mathbf{B}_1} = \left[ {\begin{array}{*{20}{c}} {{c_1}}\\ {{d_1}} \end{array}} \right].\]

Then the components \({x_1}\left( t \right),{y_1}\left( t \right)\) of the vector \({\mathbf{X}_1}\left( t \right)\) can be written as

\[{x_1}\left( t \right) = \left( {{a_0} + {a_1}t} \right)\cos t + \left( {{c_0} + {c_1}t} \right)\sin t,\]
\[{y_1}\left( t \right) = \left( {{b_0} + {b_1}t} \right)\cos t + \left( {{d_0} + {d_1}t} \right)\sin t.\]

The derivatives of these functions are given by

\[{x'_1}\left( t \right) = {a_1}\cos t - \left( {{a_0} + {a_1}t} \right)\sin t + {c_1}\sin t + \left( {{c_0} + {c_1}t} \right)\cos t,\]
\[{y'_1}\left( t \right) = {b_1}\cos t - \left( {{b_0} + {b_1}t} \right)\sin t + {d_1}\sin t + \left( {{d_0} + {d_1}t} \right)\cos t.\]

We substitute these expressions into the nonhomogeneous system:

\[\color{blue}{{a_1}\cos t} - \color{red}{{a_0}\sin t} - \color{magenta}{{a_1}t\sin t} + \color{red}{{c_1}\sin t} + \color{blue}{{c_0}\cos t} + \color{green}{{c_1}t\cos t} = - \color{blue}{{b_0}\cos t} - \color{green}{{b_1}t\cos t} - \color{red}{{d_0}\sin t} - \color{magenta}{{d_1}t\sin t},\]
\[\color{blue}{{b_1}\cos t} - \color{red}{{b_0}\sin t} - \color{magenta}{{b_1}t\sin t} + \color{red}{{d_1}\sin t} + \color{blue}{{d_0}\cos t} + \color{green}{{d_1}t\cos t} = \color{blue}{{a_0}\cos t} + \color{green}{{a_1}t\cos t} + \color{red}{{c_0}\sin t} + \color{magenta}{{c_1}t\sin t} + \color{blue}{\cos t},\]

By equating the coefficients of like functions on the left and right sides, we obtain an algebraic system for the unknown coefficients:

\[\left\{ \begin{array}{l} {a_1} + {c_0} = - {b_0}\\ - {a_0} + {c_1} = - {d_0}\\ - {a_1} = - {d_1}\\ {c_1} = - {b_1}\\ {b_1} + {d_0} = {a_0} + 1\\ - {b_0} + {d_1} = {c_0}\\ {d_1} = {a_1}\\ - {b_1} = {c_1} \end{array} \right..\]

A part of the equations in this system is dependent on the others. Therefore, some coefficients can be chosen arbitrarily (for example, we can set them equal to zero). As a result, we get the following set of numbers:

\[{a_0} = 0,\;\; {b_0} = 0,\;\; {c_0} = 0,\;\; {d_0} = \frac{1}{2},\;\; {a_1} = 0,\;\; {b_1} = \frac{1}{2},\;\; {c_1} = - \frac{1}{2},\;\; {d_1} = 0.\]

Thus, a particular solution \({\mathbf{X}_1}\left( t \right)\) has the form:

\[{\mathbf{X}_1}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_1}\left( t \right)}\\ {{y_1}\left( t \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{\left( {{a_0} + {a_1}t} \right)\cos t + \left( {{c_0} + {c_1}t} \right)\sin t}}\\ {{\left( {{b_0} + {b_1}t} \right)\cos t + \left( {{d_0} + {d_1}t} \right)\sin t}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}t\sin t}\\ {\frac{1}{2}t\cos t + \frac{1}{2}\sin t} \end{array}} \right].\]

The general solution of the original system is written as

\[\mathbf{X}\left( t \right) = {\mathbf{X}_0}\left( t \right) + {\mathbf{X}_1}\left( t \right) = {C_1}\left[ {\begin{array}{*{20}{c}} { - \sin t}\\ {\cos t} \end{array}} \right] + {C_2}\left[ {\begin{array}{*{20}{c}} {\cos t}\\ {\sin t} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - \frac{1}{2}t\sin t}\\ {\frac{1}{2}t\cos t + \frac{1}{2}\sin t} \end{array}} \right].\]

Example 5.

Solve the system of equations by variation of parameters:

\[\frac{{dx}}{{dt}} = y + \frac{1}{{\cos t}},\; \frac{{dy}}{{dt}} = - x.\]

Solution.

We first construct the general solution of the homogeneous system. Calculate the eigenvalues:

\[A = \left[ {\begin{array}{*{20}{r}} 0&1\\ { - 1}&0 \end{array}} \right],\;\; \Rightarrow \det \left( {A - \lambda I} \right) = \left| {\begin{array}{*{20}{r}} {-\lambda} &1\\ { - 1}&{ - \lambda } \end{array}} \right| = 0,\;\; \Rightarrow {\lambda ^2} + 1 = 0,\;\; \Rightarrow {\lambda ^2} = - 1,\;\; \Rightarrow {\lambda _{1,2}} = \pm i.\]

Find the complex eigenvector \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) for the eigenvalue \({\lambda _1} = + i:\)

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{r}} { - i}&1\\ { - 1}&{ - i} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow - i{V_{11}} + {V_{21}} = 0.\]

We set \({V_{11}} = t.\) Then \({V_{21}} = i{V_{11}} = it.\) Hence,

\[{\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} t\\ {it} \end{array}} \right] = t\left[ {\begin{array}{*{20}{c}} 1\\ i \end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}} 1\\ i \end{array}} \right].\]

The eigenvalue \({\lambda _1}\) and the eigenvector \({\mathbf{V}_1}\) correspond to a solution of the form

\[{\mathbf{Z}_1}\left( t \right) = {e^{{\lambda _1}t}}{\mathbf{V}_1} = {e^{it}}\left[ {\begin{array}{*{20}{c}} 1\\ i \end{array}} \right] = \left( {\cos t + i\sin t} \right)\left[ {\begin{array}{*{20}{c}} 1\\ i \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos t + i\sin t}\\ {i\cos t - \sin t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\cos t}\\ { - \sin t} \end{array}} \right] + i\left[ {\begin{array}{*{20}{c}} {\sin t}\\ {\cos t} \end{array}} \right].\]

The real and imaginary parts in the last expression form a fundamental system of solutions:

\[{\mathbf{X}_0}\left( t \right) = {C_1}\left[ {\begin{array}{*{20}{c}} {\cos t}\\ { - \sin t} \end{array}} \right] + {C_2}\left[ {\begin{array}{*{20}{c}} {\sin t}\\ {\cos t} \end{array}} \right],\]

where \({C_1},{C_2}\) are arbitrary constants.

Write down the solution separately for each coordinate:

\[\left\{ \begin{array}{l} {x_0}\left( t \right) = {C_1}\cos t + {C_2}\sin t\\ {y_0}\left( t \right) = - {C_1}\sin t + {C_2}\cos t \end{array} \right..\]

Now consider the nonhomogeneous system. In accordance with the method of variation of constants, we assume that \({C_1},{C_2}\) are functions of the variable \(t:\)

\[\left\{ \begin{array}{l} {x\left( t \right) = {C_1}\left( t \right)\cos t + {C_2}\left( t \right)\sin t}\\ {y\left( t \right) = - {C_1}\left( t \right)\sin t + {C_2}\left( t \right)\cos t} \end{array} \right..\]

Substituting these expressions in the original nonhomogeneous system yields:

\[{C'_1}\cos t - \cancel{{C_1}\sin t} + {C'_2}\sin t + \cancel{{C_2}\cos t} = - \cancel{{C_1}\sin t} + \cancel{{C_2}\cos t} + \frac{1}{{\cos t}},\]
\[- {C'_1}\sin t - \cancel{{C_1}\cos t} + {C'_2}\cos t - \cancel{{C_2}\sin t} = - \cancel{{C_1}\cos t} - \cancel{{C_2}\sin t},\]
\[\Rightarrow \left\{ \begin{array}{l} {C'_1}\cos t + {C'_2}\sin t = \frac{1}{{\cos t}}\\ - {C'_1}\sin t + {C'_2}\cos t = 0 \end{array} \right..\]

We solve the resulting system and find the functions \({C_1}\left( t \right),\) \({C_2}\left( t \right).\) This is conveniently done by using Cramer's rule:

\[\Delta = \left| {\begin{array}{*{20}{r}} {\cos t}&{\sin t}\\ { - \sin t}&{\cos t} \end{array}} \right| = {\cos ^2}t + {\sin ^2}t = 1,\;\; {\Delta _1} = \left| {\begin{array}{*{20}{c}} {\frac{1}{{\cos t}}}&{\sin t}\\ 0&{\cos t} \end{array}} \right| = \frac{1}{{\cos t}} \cdot \cos t - 0 = 1,\;\; {\Delta _2} = \left| {\begin{array}{*{20}{r}} {\cos t}&{\frac{1}{{\cos t}}}\\ { - \sin t}&0 \end{array}} \right| = 0 + \frac{1}{{\cos t}} \cdot \sin t = \tan t.\]

Hence, we obtain:

\[{C'_1} = \frac{{{\Delta _1}}}{\Delta } = \frac{1}{1} = 1,\;\; {C'_2} = \frac{{{\Delta _2}}}{\Delta } = \frac{{\tan t}}{1} = \tan t.\]

Integrating, we find:

\[{C_1}\left( t \right) = \int {1dt} = t + {A_1},\;\; {C_2}\left( t \right) = \int {\tan tdt} = \int {\frac{{\sin t}}{{\cos t}}dt} = - \int {\frac{{d\left( {\cos t} \right)}}{{\cos t}}dt} = - \ln \left| {\cos t} \right| + {A_2},\]

where \({A_1},{A_2}\) are constants of integration.

As a result, we get the following expressions for \(x\left( t \right)\) and \(y\left( t \right):\)

\[x\left( t \right) = {C_1}\left( t \right)\cos t + {C_2}\left( t \right)\sin t = \left( {t + {A_1}} \right)\cos t + \left( { - \ln \left| {\cos t} \right| + {A_2}} \right)\sin t = {A_1}\cos t + {A_2}\sin t + t\cos t - \sin t\ln \left| {\cos t} \right|,\]
\[y\left( t \right) = - {C_1}\left( t \right)\sin t + {C_2}\left( t \right)\cos t = - \left( {t + {A_1}} \right)\sin t + \left( { - \ln \left| {\cos t} \right| + {A_2}} \right)\cos t = - {A_1}\sin t + {A_2}\cos t - t\sin t - \cos t\ln \left| {\cos t} \right|.\]

The first two terms with the coefficients \({A_1},{A_2}\) in every expression describe the solution of the homogeneous system. The remaining terms are due to the inhomogeneous part. The final answer can be expressed as

\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {x\left( t \right)}\\ {y\left( t \right)} \end{array}} \right] = {A_1}\left[ {\begin{array}{*{20}{c}} {\cos t}\\ { - \sin t} \end{array}} \right] + {A_2}\left[ {\begin{array}{*{20}{c}} {\sin t}\\ {\cos t} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {t\cos t - \sin t\ln \left| {\cos t} \right|}\\ { - t\sin t - \cos t\ln \left| {\cos t} \right|} \end{array}} \right].\]

Example 6.

Solve the linear nonhomogeneous system by variation of constants:

\[\frac{{dx}}{{dt}} = 2x - y + {e^{2t}},\;\frac{{dy}}{{dt}} = 6x - 3y + {e^t} + 1.\]

Solution.

We begin with the construction of the general solution of the homogeneous system. Calculate the eigenvalues of the matrix \(A\) and the corresponding eigenvectors.

\[\det \left( {A - \lambda I} \right) = \left| {\begin{array}{*{20}{c}} 2&{ - 1}\\ 6&{ - 3} \end{array}} \right| = 0,\;\; \Rightarrow \left( {2 - \lambda } \right)\left( { - 3 - \lambda } \right) + 6 = 0,\;\; \Rightarrow \left( {\lambda - 2} \right)\left( {\lambda + 3} \right) + 6 = 0,\;\; \Rightarrow {\lambda ^2} - 2\lambda + 3\lambda - \cancel{6} + \cancel{6} = 0,\;\; \Rightarrow {\lambda ^2} + \lambda = 0,\;\; \Rightarrow \lambda \left( {\lambda + 1} \right) = 0,\;\; \Rightarrow {\lambda _1} = 0,\;{\lambda _2} = - 1.\]

The eigenvector \({\mathbf{V}_1} = {\left( {{V_{11}},{V_{21}}} \right)^T}\) for the eigenvalue \({\lambda _1} = 0\) is equal to

\[\left( {A - {\lambda _1}I} \right){\mathbf{V}_1} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} 2&{ - 1}\\ 6&{ - 3} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow 2{V_{11}} - {V_{21}} = 0,\;\; \Rightarrow {V_{11}} = t,\;\; {V_{21}} = 2{V_{11}} = 2t,\;\; \Rightarrow {\mathbf{V}_1} = \left[ {\begin{array}{*{20}{c}} {{V_{11}}}\\ {{V_{21}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} t\\ {2t} \end{array}} \right] = t\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right].\]

Similarly we find the eigenvector \({\mathbf{V}_2} = {\left( {{V_{12}},{V_{22}}} \right)^T}\) associated with the eigenvalue \({\lambda _2} = -1:\)

\[\left( {A - {\lambda _2}I} \right){\mathbf{V}_2} = \mathbf{0},\;\; \Rightarrow \left[ {\begin{array}{*{20}{c}} 3&{ - 1}\\ 6&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \mathbf{0},\;\; \Rightarrow 3{V_{12}} - {V_{22}} = 0,\;\; \Rightarrow {V_{12}} = t,\;\; {V_{22}} = 3{V_{12}} = 3t,\;\; \Rightarrow {\mathbf{V}_2} = \left[ {\begin{array}{*{20}{c}} {{V_{12}}}\\ {{V_{22}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} t\\ {3t} \end{array}} \right] = t\left[ {\begin{array}{*{20}{c}} 1\\ 3 \end{array}} \right] \sim \left[ {\begin{array}{*{20}{c}} 1\\ 3 \end{array}} \right].\]

Hence, the general solution of the homogeneous system is given by

\[{\mathbf{X}_0}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {{x_0}\left( t \right)}\\ {{y_0}\left( t \right)} \end{array}} \right] = {C_1}\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right] + {C_2}{e^{ - t}}\left[ {\begin{array}{*{20}{c}} 1\\ 3 \end{array}} \right],\]

where \({C_1},{C_2}\) are constant numbers.

Consider the original inhomogeneous system and find its solution by variation of parameters. We replace the constants \({C_1},{C_2}\) with the functions \({C_1}\left( t \right),\) \({C_2}\left( t \right),\) i.e. we will seek the solution in the form

\[\mathbf{X}\left( t \right) = {C_1}\left( t \right)\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right] + {C_2}\left( t \right){e^{ - t}}\left[ {\begin{array}{*{20}{c}} 1\\ 3 \end{array}} \right]\]

or

\[\left\{ \begin{array}{l} x\left( t \right) = {C_1}\left( t \right) + {C_2}\left( t \right){e^{ - t}}\\ y\left( t \right) = 2{C_1}\left( t \right) + 3{C_2}\left( t \right){e^{ - t}} \end{array} \right..\]

The derivatives of these functions are

\[\left\{ \begin{array}{l} {x'\left( t \right) = {C'_1} + {C'_2}{e^{ - t}} - {C_2}{e^{ - t}} }\\ {y'\left( t \right) = 2{C'_1} + 3{C'_2}{e^{ - t}} - 3{C_2}{e^{ - t}} } \end{array} \right..\]

Next, we substitute these expressions into the nonhomogeneous system:

\[{C'_1} + {C'_2}{e^{ - t}} - \cancel{{C_2}{e^{ - t}}} = \cancel{2{C_1}} + \cancel{2{C_2}{e^{ - t}}} - \cancel{2{C_1}} - \cancel{3{C_2}{e^{ - t}}} + {e^{2t}} ,\]
\[2{C'_1} + 3{C'_2}{e^{ - t}} - \cancel{3{C_2}{e^{ - t}}} = \cancel{6{C_1}} + \cancel{6{C_2}{e^{ - t}}} - \cancel{6{C_1}} - \cancel{9{C_2}{e^{ - t}}} + {e^t} + 1,\]
\[\Rightarrow \left\{ {\begin{array}{*{20}{l}} {{C'_1} + {C'_2}{e^{ - t}} = {e^{2t}}}\\ {2{C'_1} + 3{C'_2}{e^{ - t}} = {e^t} + 1} \end{array}} \right..\]

Solving the resulting system of algebraic equations, we find the derivatives \({C'_1},{C'_2}\) and then the functions \({C_1}\left( t \right), {C_2}\left( t \right):\)

\[\Delta = \left| {\begin{array}{*{20}{c}} 1&{{e^{ - t}}}\\ 2&{3{e^{ - t}}} \end{array}} \right| = 3{e^{ - t}} - 2{e^{ - t} = e^{ - t}},\]
\[{\Delta _1} = \left| {\begin{array}{*{20}{c}} {{e^{2t}}}&{{e^{ - t}}}\\ {{e^t} + 1}&{3{e^{ - t}}} \end{array}} \right| = 3{e^{2t}}{e^{ - t}} - {e^{ - t}}\left( {{e^t} + 1} \right) = 3{e^t} - {e^{ - t}} - 1,\]
\[{\Delta _2} = \left| {\begin{array}{*{20}{c}} 1&{{e^{2t}}}\\ 2&{{e^t} + 1} \end{array}} \right| = {e^t} - 2{e^{2t}} + 1,\]
\[\Rightarrow {C'_1} = \frac{{{\Delta _1}}}{\Delta } = \frac{{3{e^t} - {e^{ - t}} - 1}}{{{e^{ - t}}}} = 3{e^{2t}} - {e^t} - 1,\]
\[\Rightarrow {C'_2} = \frac{{{\Delta _2}}}{\Delta } = \frac{{{e^t} - 2{e^{2t}} + 1}}{{{e^{ - t}}}} = {e^{2t}} - 2{e^{3t}} + {e^t}.\]

Integrating, we obtain:

\[{C_1}\left( t \right) = \int {\left( {3{e^{2t}} + {e^t} - 1} \right)dt} = \frac{3}{2}{e^{2t}} - {e^t} - t + {A_1},\]
\[{C_2}\left( t \right) = \int {\left( {{e^{2t}} - 2{e^{3t}} + {e^t}} \right)dt} = \frac{1}{2}{e^{2t}} - \frac{2}{3}{e^{3t}} + {e^t} + {A_2}.\]

The functions \(x\left( t \right),y\left( t \right)\) will have the following form:

\[ x\left( t \right) = {C_1}\left( t \right) + {C_2}\left( t \right){e^{ - t}} = \left( {\frac{3}{2}{e^{2t}} - {e^t} - t + {A_1}} \right) + \left( {\frac{1}{2}{e^{2t}} - \frac{2}{3}{e^{3t}} + {e^t} + {A_2}} \right){e^{ - t}} = {A_1} + {A_2}{e^{ - t}} + \frac{5}{6}{e^{2t}} - \frac{1}{2}{e^t} - t + 1,\]
\[y\left( t \right) = 2{C_1}\left( t \right) + 3{C_2}\left( t \right){e^{ - t}} = 2\left( {\frac{3}{2}{e^{2t}} - {e^t} - t + {A_1}} \right) + 3\left( {\frac{1}{2}{e^{2t}} - \frac{2}{3}{e^{3t}} + {e^t} + {A_2}} \right){e^{ - t}} = 2{A_1} + 3{A_2}{e^{ - t}} + {e^{2t}} - \frac{1}{2}{e^t} - 2t + 3.\]

The final answer can be represented in the form:

\[\mathbf{X}\left( t \right) = \left[ {\begin{array}{*{20}{c}} {x\left( t \right)}\\ {y\left( t \right)} \end{array}} \right] = {A_1}\left[ {\begin{array}{*{20}{c}} 1\\ 2 \end{array}} \right] + {A_2}{e^{ - t}}\left[ {\begin{array}{*{20}{c}} 1\\ 3 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\frac{5}{6}{e^{2t}} - \frac{1}{2}{e^t} - t + 1}\\ {{e^{2t}} - \frac{1}{2}{e^t} - 2t + 3} \end{array}} \right].\]

Note that the inhomogeneous part in this problem consists of quasi-polynomials. Therefore, the solution to the system of equations can also be obtained using the method of undetermined coefficients and the principle of superposition.

Page 1 Page 2