Differential Equations

Systems of Equations

Systems Diff Equations Logo

Linear Homogeneous Systems of Differential Equations with Constant Coefficients

Solved Problems

Example 1.

Solve the system of differential equations by elimination: \[{x'_1} = 2{x_1} + 3{x_2},\;{x'_2} = 4{x_1} - 2{x_2}.\]

Solution.

We differentiate the first equation and then substitute the derivative \({x'_2}\) from the second equation:

\[{x^{\prime\prime}_1} = 2{x'_1} + 3{x'_2},\;\; \Rightarrow {x^{\prime\prime}_1} = 2{x'_1} + 3\left( {4{x_1} - 2{x_2}} \right),\;\; \Rightarrow {x^{\prime\prime}_1} = 2{x'_1} + 12{x_1} - 6{x_2}.\]

Express \(3{x_2}\) from the first equation:

\[3{x_2} = {x'_1} - 2{x_1}.\]

Substituting this into the last equation, we get:

\[{x^{\prime\prime}_1} = 2{x'_1} + 12{x_1} - 2\left( {{x'_1} - 2{x_1}} \right),\;\; \Rightarrow {x^{\prime\prime}_1} = \cancel{2{x'_1}} + 12{x_1} - \cancel{2{x'_1}} + 4{x_1},\;\; \Rightarrow {x^{\prime\prime}_1} - 16{x_1} = 0.\]

Find the roots of the characteristic equation:

\[{\lambda ^2} - 16 = 0,\;\; \Rightarrow {\lambda _{1,2}} = \pm 4.\]

Hence, the general solution of the \(2\)nd order equation for the variable \({x_1}\) is given by

\[{x_1}\left( t \right) = {C_1}{e^{4t}} + {C_2}{e^{ - 4t}},\]

where \({C_1},\) \({C_2}\) are arbitrary constants.

Now we compute the derivative \({x'_1}\) and substitute the expressions for \({x_1},\) \({x'_1}\) in the first equation of the original system:

\[{x'_1}\left( t \right) = 4{C_1}{e^{4t}} - 4{C_2}{e^{ - 4t}},\;\; \Rightarrow 4{C_1}{e^{4t}} - 4{C_2}{e^{ - 4t}} = 2{C_1}{e^{4t}} + 2{C_2}{e^{ - 4t}} + 3{x_2},\;\; \Rightarrow 3{x_2} = 2{C_1}{e^{4t}} - 6{C_2}{e^{ - 4t}},\;\; \Rightarrow {x_2} = \frac{2}{3}{C_1}{e^{4t}} - 2{C_2}{e^{ - 4t}}.\]

To keep integer coefficients, it is convenient to designate: \({C_1} \to 3{C_1}.\) As a result, we obtain the final solution in the following form:

\[\left\{ \begin{array}{l} {x_1}\left( t \right) = 3{C_1}{e^{4t}} + {C_2}{e^{ - 4t}}\\ {x_2}\left( t \right) = 2{C_1}{e^{4t}} - 2{C_2}{e^{ - 4t}} \end{array} \right..\]

Example 2.

Solve the system by elimination: \[x' = 6x - y,\;y' = x + 4y.\]

Solution.

We convert this system to a single \(2\)nd order equation for the function \(x\left( t \right).\) Differentiating the first equation and substituting \(y'\) from the second equation, we have:

\[x^{\prime\prime} = 6x' - y',\;\; \Rightarrow x^{\prime\prime} = 6x' - \left( {x + 4y} \right),\;\; \Rightarrow x^{\prime\prime} = 6x' - x - 4y.\]

Express the variable \(y\) in terms of \(x\) and \(x'\) from the first equation:

\[y = 6x - x',\;\; \Rightarrow x^{\prime\prime} = 6x' - x - 4\left( {6x - x'} \right),\;\; \Rightarrow x^{\prime\prime} = 6x' - x - 24x + 4x',\;\; \Rightarrow x^{\prime\prime} - 10x' + 25x = 0.\]

Compute the roots of the auxiliary equation:

\[{\lambda ^2} - 10\lambda + 25 = 0,\;\; D = 0,\;\; \Rightarrow {\lambda _1} = 5.\]

So, we have one root \(\lambda = 5\) of multiplicity \(2.\) Consequently, the general solution for the function \(x\left( t \right)\) is written as

\[x\left( t \right) = \left( {{C_1} + {C_2}t} \right){e^{5t}},\]

where \({C_1},\) \({C_2}\) are arbitrary numbers.

Find the derivative \(x'\left( t \right)\) and substituting it in the first equation of the original system determine the function \(y\left( t \right):\)

\[x'\left( t \right) = {C_2}{e^{5t}} + \left( {5{C_1} + 5{C_2}t} \right){e^{5t}} = \left( {5{C_1} + {C_2} + 5{C_2}t} \right){e^{5t}},\;\; \Rightarrow \left( {5{C_1} + {C_2} + 5{C_2}t} \right){e^{5t}} = \left( {6{C_1} + 6{C_2}t} \right){e^{5t}} - y,\;\; \Rightarrow y = \left( {{C_1} - {C_2} + {C_2}t} \right){e^{5t}}.\]

Hence, the general solution is written as

\[\left\{ \begin{array}{l} x\left( t \right) = \left( {{C_1} + {C_2}t} \right){e^{5t}}\\ y\left( t \right) = \left( {{C_1} - {C_2} + {C_2}t} \right){e^{5t}} \end{array} \right..\]

Example 3.

Find the general solution of the system \[{x'_1} = 5{x_1} + 2{x_2},\;{x'_2} = - 4{x_1} + {x_2}.\]

Solution.

Differentiating the first equation, we get:

\[{x^{\prime\prime}_1} = 5{x'_1} + 2{x'_2}.\]

Substitute the derivative \({x'_2}\) from the second equation:

\[{x^{\prime\prime}_1} = 5{x'_1} + 2\left( { - 4{x_1} + {x_2}} \right),\;\; \Rightarrow {x^{\prime\prime}_1} = 5{x'_1} - 8{x_1} + 2{x_2}.\]

Express \(2{x_2}\) in terms of \({x_1}\) from the first equation:

\[{x^{\prime\prime}_1} = 5{x'_1} - 8{x_1} + {x'_1} - 5{x_1},\;\; \Rightarrow {x^{\prime\prime}_1} - 6{x'_1} + 13{x_1} = 0.\]

We have obtained a homogeneous equation of the \(2\)nd order with constant coefficients. As usual, we construct the general solution using the characteristic equation:

\[{\lambda ^2} - 6\lambda + 13 = 0,\;\; D = 36 - 52 = - 16,\;\; \Rightarrow {\lambda _{1,2}} = \frac{{6 \pm \sqrt { - 16} }}{2} = \frac{{6 \pm 4i}}{2} = 3 \pm 2i.\]

As it can be seen, the auxiliary equation has roots in the form of a pair of complex conjugate numbers. The general solution for the function \({x_1}\left( t \right)\) can be written as

\[{x_1}\left( t \right) = {e^{3t}}\left( {{C_1}\cos 2t + {C_2}\sin 2t} \right),\]

where \({C_1},\) \({C_2}\) are arbitrary constants.

Now we find another function \({x_1}\left( t \right).\) The derivative \({x'_1}\) is

\[{x'_1}\left( t \right) = 3{e^{3t}}\left( {{C_1}\cos 2t + {C_2}\sin 2t} \right) + {e^{3t}}\left( { - 2{C_1}\sin 2t + 2{C_2}\cos 2t} \right) = {e^{3t}}\left[ {\left( {3{C_1} + 2{C_2}} \right)\cos 2t + \left( {3{C_2} - 2{C_1}} \right)\sin 2t} \right].\]

Substituting \({x_1}\) and \({x'_1}\) in the first equation, we get:

\[{e^{3t}}\left[ {\left( {3{C_1} + 2{C_2}} \right)\cos 2t + \left( {3{C_2} - 2{C_1}} \right)\sin 2t} \right] = 5{e^{3t}}\left( {{C_1}\cos 2t + {C_2}\sin 2t} \right) + 2{x_2},\;\; \Rightarrow 2{x_2} = {e^{3t}}\left[ {\left( {2{C_2} - 2{C_1}} \right)\cos 2t - \left( {2{C_2} + 2{C_1}} \right)\sin 2t} \right],\;\; \Rightarrow {x_2} = {e^{3t}}\left[ {\left( {{C_2} - {C_1}} \right)\cos 2t - \left( {{C_2} + {C_1}} \right)\sin 2t} \right].\]

So, the general solution is given by

\[\left\{ \begin{array}{l} {x_1}\left( t \right) = {e^{3t}}\left[ {{C_1}\cos 2t + {C_2}\sin 2t} \right]\\ {x_2}\left( t \right) = {e^{3t}}\left[ {\left( {{C_2} - {C_1}} \right)\cos 2t - \left( {{C_2} + {C_1}} \right)\sin 2t} \right] \end{array} \right..\]
Page 1 Page 2