Lexicographic Orders
Solved Problems
Example 1.
The lexicographic order with the usual "less than" relation is defined on the Cartesian square \(A^2,\) where \(A = \left\{ {1,2,3,4} \right\}.\) Find all pairs in \(A^2\) greater than \(\left({3,2}\right).\)
Solution.
The lexicographic order on \(A^2\) is given by
Hence, the following pairs are greater than \(\left({3,2}\right):\)
Example 2.
The lexicographic order with the usual "less than" relation is defined on the Cartesian product \(B^3,\) where \(B = \left\{ {1,2,3} \right\}.\) Find all elements in \(B^3\) greater than \(\left({2,1,3}\right)\) and less than \(\left({3,2,1}\right).\)
Solution.
We list the elements of \(B^3\) in lexicographical order:
So, the following elements are greater than \(\left({2,1,3}\right)\) and less than \(\left({3,2,1}\right):\)
Example 3.
List all \(3-\) subsets of \(\left\{ {a,b,c,d,e} \right\}\) in lexicographic order.
Solution.
The \(3-\)subsets of the set \(\left\{ {a,b,c,d,e} \right\}\) are ordered in the following way:
Example 4.
List all \(4-\) subsets of \(\left\{ {1,2,3,4,5,6} \right\}\) in lexicographic order.
Solution.
All \(4-\)subsets of the set \(\left\{ {1,2,3,4,5,6} \right\}\) are represented in the following order:
Example 5.
Given two posets \(\left( {A, \le } \right)\) and \(\left( {\mathcal{P}\left( A \right), \subseteq} \right),\) where \(A = \left\{ {1,2,3} \right\}\) and \(\mathcal{P}\left( A \right)\) denotes the power set of \(A.\) The lexicographic order \(\preccurlyeq\) is defined on the Cartesian product \(A \times \mathcal{P}\left( A \right).\) Determine whether the following statements are true or false:
- \(\left( {2, \varnothing} \right) \preccurlyeq \left( {1,\left\{ {1,2,3} \right\}} \right)\)
- \(\left( {1,\left\{ 1 \right\}} \right) \preccurlyeq \left( {2,\left\{ {2,3} \right\}} \right)\)
- \(\left( {2,\left\{ 1 \right\}} \right) \preccurlyeq \left( {2,\left\{ {2,3} \right\}} \right)\)
- \(\left( {3,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {3,\left\{ {2,3} \right\}} \right)\)
- \(\left( {3,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {3,\left\{ {1,2,3} \right\}} \right)\)
Solution.
- The statement \(\left( {2, \varnothing} \right) \preccurlyeq \left( {1,\left\{ {1,2,3} \right\}} \right)\) is false because \(2 \not\le 1.\)
- The statement \(\left( {1,\left\{ 1 \right\}} \right) \preccurlyeq \left( {2,\left\{ {2,3} \right\}} \right)\) is true since \(1 \le 2.\)
- The statement \(\left( {2,\left\{ 1 \right\}} \right) \preccurlyeq \left( {2,\left\{ {2,3} \right\}} \right)\) is false since \(\left\{ {1} \right\} \not\subseteq \left\{ {2,3} \right\}.\)
- Similarly to the previous case, the statement \(\left( {3,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {3,\left\{ {2,3} \right\}} \right)\) is false because \(\left\{ {1,3} \right\} \not\subseteq \left\{ {2,3} \right\}.\)
- The statement \(\left( {3,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {3,\left\{ {1,2,3} \right\}} \right)\) is true since \(3 = 3\) and \(\left\{ {1,3} \right\} \subseteq \left\{ {1,2,3} \right\}.\)
Example 6.
Given two posets \(\left( {B, \mid } \right)\) and \(\left( {\mathcal{P}\left( B \right), \subseteq} \right),\) where \(B = \left\{ {2,3,4,8} \right\},\) "|" means the divisibility relation, and \(\mathcal{P}\left( B \right)\) denotes the power set of \(B.\) The lexicographic order \(\preccurlyeq\) is defined on the Cartesian product \(B \times \mathcal{P}\left( B \right).\) Determine whether the following statements are true or false:
- \(\left( {2, \varnothing} \right) \preccurlyeq \left( {3,\left\{ {4,8} \right\}} \right)\)
- \(\left( {2,\left\{ 4 \right\}} \right) \preccurlyeq \left( {4,\left\{ {3,8} \right\}} \right)\)
- \(\left( {2,\left\{ 4 \right\}} \right) \preccurlyeq \left( {2,\left\{ {3,4,8} \right\}} \right)\)
- \(\left( {4,\left\{ 2,3 \right\}} \right) \preccurlyeq \left( {4,\left\{ {3,4} \right\}} \right)\)
- \(\left( {8,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {4,\left\{ {1,2,3} \right\}} \right)\)
Solution.
- The statement \(\left( {2, \varnothing} \right) \preccurlyeq \left( {3,\left\{ {4,8} \right\}} \right)\) is false because \(2\) does not divide \(3.\)
- The statement \(\left( {2,\left\{ 4 \right\}} \right) \preccurlyeq \left( {4,\left\{ {3,8} \right\}} \right)\) is true since \(2\) divides \(4\) (although \(\left\{ {4} \right\} \not\subseteq \left\{ {3,8} \right\}\)).
- The statement \(\left( {2,\left\{ 4 \right\}} \right) \preccurlyeq \left( {2,\left\{ {3,4,8} \right\}} \right)\) is true because \(2 = 2\) and \(\left\{ {4} \right\} \subseteq \left\{ {3,4,8} \right\}.\)
- The statement \(\left( {4,\left\{ 2,3 \right\}} \right) \preccurlyeq \left( {4,\left\{ {3,4} \right\}} \right)\) is false. Here \(4 = 4,\) but\(\left\{ {2,3} \right\} \not\subseteq \left\{ {3,4} \right\}.\)
- The statement \(\left( {8,\left\{ 1,3 \right\}} \right) \preccurlyeq \left( {4,\left\{ {1,2,3} \right\}} \right)\) is false since \(8\) does not divide \(4.\)