Precalculus

Trigonometry

Trigonometry Logo

Inverse Trigonometric Functions

Solved Problems

Example 1.

Find the domain of the function \[y = \arcsin \left( {x - 1} \right).\]

Solution.

We know that the inverse sine function is defined in the closed interval \(\left[ { - 1,1} \right].\) Then we have the following inequality:

\[ - 1 \le x - 1 \le 1.\]

Adding \(1\) to all parts of the double inequality yields:

\[ - 1 \le x - 1 \le 1, \Rightarrow - 1 + 1 \le x - 1 + 1 \le 1 + 1, \Rightarrow 0 \le x \le 2.\]

Hence, the domain of the function is \(x \in \left[ {0,2} \right].\)

Example 2.

Find the domain of the function \[y = \arccos \frac{{1 - x}}{2}.\]

Solution.

The inverse cosine function is defined on the interval \(\left[ { - 1,1} \right].\) So we can write:

\[ - 1 \le \frac{{1 - x}}{2} \le 1.\]

Multiply all parts of the inequality by \(2:\)

\[ - 2 \le 1 - x \le 2.\]

Substract \(1:\)

\[ - 3 \le - x \le 1.\]

Now we multiply all sides by \(-1.\) Remember that multiplying an inequality by a negative number reverses this inequality. Therefore

\[ - 3 \le - x \le 1, \Rightarrow - 1 \le x \le 3.\]

Hence, the domain of the function is \(x \in \left[ { - 1,3} \right].\)

Example 3.

Find the range of the function \[y = 2\,{\arctan ^2}\frac{x}{2}.\]

Solution.

The range of the inverse tangent function \(y = \arctan x\) is the open interval \(\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right).\)

The function \(\arctan \frac{x}{2}\) has the same range \(\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right).\)

When squared, the interval \(\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)\) is transformed into \(\left[ {0,\frac{{{\pi ^2}}}{4}} \right).\)

Multiplying by \(2\) we get the following answer:

\[\text{codom}\left( y \right) = \left[ {0,\frac{{{\pi ^2}}}{2}} \right).\]

Example 4.

Find the range of the function \[y = \frac{1}{2}{\text{arccot}^3}x.\]

Solution.

The basic function \(y = \text{arccot }x\) has the range \(\left( {0,\pi } \right).\)

For the cubic function \(y = {\text{arccot}^3}x,\) we get the range \(\left( {0,\pi^3 } \right).\)

Hence, the range of the function \(y = \frac{1}{2}{\text{arccot}^3}x\) is given by

\[\text{codom}\left( y \right) = \left({0,\frac{{{\pi ^3}}}{2}} \right).\]

Example 5.

Evaluate \[{\sin ^2}\left( {\arccos \frac{4}{5}} \right).\]

Solution.

By the Pythagorean theorem,

\[{\sin ^2}\left( {\arccos \frac{4}{5}} \right) = 1 - {\cos ^2}\left( {\arccos \frac{4}{5}} \right) = 1 - {\left( {\cos \left( {\arccos \frac{4}{5}} \right)} \right)^2} = 1 - {\left( {\frac{4}{5}} \right)^2} = 1 - \frac{{16}}{{25}} = \frac{9}{{25}}.\]

Example 6.

Evaluate \[\sin \left( {\arccos \frac{3}{5}} \right).\]

Solution.

Let \(\alpha = \arccos \frac{3}{5}.\) By the Pythagorean identity,

\[{\sin ^2}\alpha + {\cos ^2}\alpha = 1.\]

Hence we can write

\[\sin \alpha = \pm\sqrt {1 - {{\cos }^2}\alpha } = \pm\sqrt {1 - {{\cos }^2}\left( {\arccos \frac{3}{5}} \right)} = \pm\sqrt {1 - {{\left( {\cos \left( {\arccos \frac{3}{5}} \right)} \right)}^2}} = \pm\sqrt {1 - {{\left( {\frac{3}{5}} \right)}^2}} = \pm\sqrt {1 - \frac{9}{{25}}} = \pm\sqrt {\frac{{16}}{{25}}} = \pm\frac{4}{5}.\]

Note that the angle \(\alpha = \arccos \frac{3}{5}\) is in the \(1\text{st}\) quadrant where the sine has positive sign, so the answer is

\[\sin \left( {\arccos \frac{3}{5}} \right) = \frac{4}{5}.\]

Example 7.

Evaluate \[\sin \left( {\frac{1}{2}\arccos \frac{3}{5}} \right).\]

Solution.

We know that

\[\sin \frac{\alpha }{2} = \pm \sqrt {\frac{{1 - \cos \alpha }}{2}} .\]

The angle \({\frac{1}{2}\arccos \frac{3}{5}}\) lies in the \(1\text{st}\) quadrant where the sine is positive. Therefore we take the positive sign on the square root. This gives

\[\sin \left( {\frac{1}{2}\arccos \frac{3}{5}} \right) = \sqrt {\frac{{1 - \cos \left( {\arccos \frac{3}{5}} \right)}}{2}} = \sqrt {\frac{{1 - \frac{3}{5}}}{2}} = \sqrt {\frac{{\frac{2}{5}}}{2}} = \frac{1}{{\sqrt 5 }}.\]

Example 8.

Evaluate \[\cot \left( {\text{arcsec}\left( { - 2} \right)} \right).\]

Solution.

It follows from the Pythagorean identity that

\[{\tan ^2}\alpha = {\sec ^2}\alpha - 1.\]

Let \(\alpha = \text{arcsec} \left( { - 2} \right).\) The angle \(\alpha\) lies in the \(2\text{nd}\) quadrant where \(\tan\alpha \lt 0.\) Then we have

\[\tan \alpha = - \sqrt {{{\sec }^2}\alpha - 1} .\]

The cotangent is the reciprocal function of tangent. Hence

\[\cot \alpha = \frac{1}{{\tan \alpha }} = - \frac{1}{{\sqrt {{{\sec }^2}\alpha - 1} }} = - \frac{1}{{\sqrt {{{\sec }^2}\left( {\text{arcsec} \left( { - 2} \right)} \right) - 1} }} = - \frac{1}{{\sqrt {{{\left( { - 2} \right)}^2} - 1} }} = - \frac{1}{{\sqrt {4 - 1} }} = - \frac{1}{{\sqrt 3 }}.\]

The answer is

\[\cot \left( {\text{arcsec} \left( { - 2} \right)} \right) = - \frac{1}{{\sqrt 3 }}.\]

Example 9.

Evaluate \[A = \frac{2}{\pi }\left( {\arcsin \frac{3}{4} + \arccos \frac{3}{4}} \right).\]

Solution.

We denote

\[z = \arcsin \frac{3}{4} + \arccos \frac{3}{4}.\]

Using the sine addition formula, we have

\[\sin z = \sin \left( {\arcsin \frac{3}{4} + \arccos \frac{3}{4}} \right) = \sin \left( {\arcsin \frac{3}{4}} \right)\cos \left( {\arccos \frac{3}{4}} \right) + \cos \left( {\arcsin \frac{3}{4}} \right)\sin \left( {\arccos \frac{3}{4}} \right).\]

Calculate all terms separately:

\[\sin \left( {\arcsin \frac{3}{4}} \right) = \frac{3}{4};\]
\[\cos \left( {\arccos \frac{3}{4}} \right) = \frac{3}{4};\]
\[\cos \left( {\arcsin \frac{3}{4}} \right) = \sqrt {1 - {{\sin }^2}\left( {\arcsin \frac{3}{4}} \right)} = \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}} = \sqrt {1 - \frac{9}{{16}}} = \sqrt {\frac{7}{{16}}} = \frac{{\sqrt 7 }}{4};\]
\[\sin \left( {\arccos \frac{3}{4}} \right) = \sqrt {1 - {{\cos }^2}\left( {\arccos \frac{3}{4}} \right)} = \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}} = \sqrt {1 - \frac{9}{{16}}} = \sqrt {\frac{7}{{16}}} = \frac{{\sqrt 7 }}{4}.\]

Then

\[\sin z = \frac{3}{4} \cdot \frac{3}{4} + \frac{{\sqrt 7 }}{4} \cdot \frac{{\sqrt 7 }}{4} = \frac{9}{{16}} + \frac{7}{{16}} = \frac{{16}}{{16}} = 1.\]

Find the original expression \(A:\)

\[\sin z = 1, \Rightarrow z = \frac{\pi }{2}, \Rightarrow A = \frac{2}{\pi }z = \frac{2}{\pi } \cdot \frac{\pi }{2} = 1.\]

Example 10.

Evaluate \[B = \frac{8}{\pi }\left( {\arctan \frac{1}{2} + \arctan \frac{1}{3}} \right).\]

Solution.

We use the tangent addition formula:

\[\tan \left( {\alpha + \beta } \right) = \frac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha \tan \beta }}.\]

Let \(z = {\arctan \frac{1}{2} + \arctan \frac{1}{3}}.\) Then

\[\tan z = \tan \left( {\arctan \frac{1}{2} + \arctan \frac{1}{3}} \right) = \frac{{\tan \left( {\arctan \frac{1}{2}} \right) + \tan \left( {\arctan \frac{1}{3}} \right)}}{{1 - \tan \left( {\arctan \frac{1}{2}} \right)\tan \left( {\arctan \frac{1}{3}} \right)}} = \frac{{\frac{1}{2} + \frac{1}{3}}}{{1 - \frac{1}{2} \cdot \frac{1}{3}}} = \frac{{\frac{5}{6}}}{{1 - \frac{1}{6}}} = \frac{{\cancel{{\frac{5}{6}}}}}{{\cancel{{\frac{5}{6}}}}} = 1.\]

Now we can easily find the value of the expression \(B:\)

\[\tan z = 1, \Rightarrow z = \frac{\pi }{4}, \Rightarrow B = \frac{8}{\pi }z = \frac{8}{\pi } \cdot \frac{\pi }{4} = 2.\]
Page 1 Page 2