Precalculus

Trigonometry

Trigonometry Logo

Graphs of Secant and Cosecant Functions

Solved Problems

Example 1.

Find the exact value of

  1. \(\sec \left( { - \frac{{3\pi }}{4}} \right)\)
  2. \(\csc \frac{{11\pi }}{3}\)

Solution.

  1. Using the secant definition, evenness of the cosine function and reduction identity, we get
    \[\sec \left( { - \frac{{3\pi }}{4}} \right) = \frac{1}{{\cos \left( { - \frac{{3\pi }}{4}} \right)}} = \frac{1}{{\cos \frac{{3\pi }}{4}}} = \frac{1}{{\cos \left( {\pi - \frac{\pi }{4}} \right)}} = - \frac{1}{{\cos \frac{\pi }{4}}} = - \frac{1}{{\frac{{\sqrt 2 }}{2}}} = - \frac{2}{{\sqrt 2 }} = - \sqrt 2 .\]
  2. The cosecant function is \(2\pi-\)periodic and odd. Therefore
    \[\csc \frac{{11\pi }}{3} = \csc \left( {\frac{{12\pi }}{3} - \frac{\pi }{3}} \right) = \csc \left( {4\pi - \frac{\pi }{3}} \right) = \csc \left( { - \frac{\pi }{3}} \right) = - \csc \frac{\pi }{3} = - \frac{1}{{\sin \frac{\pi }{3}}} = - \frac{1}{{\frac{{\sqrt 3 }}{2}}} = - \frac{2}{{\sqrt 3 }}.\]

Example 2.

Find the exact value of

  1. \(\sec \frac{{\pi }}{8}\)
  2. \(\csc \left( { - \frac{{41\pi }}{6}} \right)\)

Solution.

  1. By definition,
    \[\sec \frac{\pi }{8} = \frac{1}{{\cos \frac{\pi }{8}}}.\]
    Apply the half-angle formula
    \[\cos \frac{\alpha }{2} = \pm \sqrt {\frac{{1 + \cos \alpha }}{2}} .\]
    Given that the angle \(\frac{\pi }{8}\) lies in the \(1\text{st}\) quadrant, we can write
    \[\cos \frac{\pi }{8} = \sqrt {\frac{{1 + \cos \frac{\pi }{4}}}{2}} = \sqrt {\frac{{1 + \frac{{\sqrt 2 }}{2}}}{2}} = \sqrt {\frac{{2 + \sqrt 2 }}{4}} = \frac{{\sqrt {2 + \sqrt 2 } }}{2}.\]
    By flipping the fraction, we obtain:
    \[\sec \frac{\pi }{8} = \frac{2}{{\sqrt {2 + \sqrt 2 } }}.\]
  2. The cosecant function is a periodic and odd. Therefore
    \[\csc \left( { - \frac{{41\pi }}{6}} \right) = - \csc \frac{{41\pi }}{6} = - \csc \left( {\frac{{36\pi }}{6} + \frac{{5\pi }}{6}} \right) = - \csc \left( {6\pi + \frac{{5\pi }}{6}} \right) = - \csc \frac{{5\pi }}{6}.\]
    Using the definition of cosecant and reduction formula, we get
    \[\csc \left( { - \frac{{41\pi }}{6}} \right) = - \csc \frac{{5\pi }}{6} = - \frac{1}{{\sin \frac{{5\pi }}{6}}} = - \frac{1}{{\sin \left( {\pi - \frac{\pi }{6}} \right)}} = - \frac{1}{{\sin \frac{\pi }{6}}} = - \frac{1}{{\frac{1}{2}}} = - 2.\]

Example 3.

Find the domain of the function \[y = \sec x + \csc x.\]

Solution.

The secant function is undefined at \(x = \frac{\pi }{2} + \pi n,\,n \in \mathbb{Z},\) and the cosecant function is undefined at \(x = \pi n,\,n \in \mathbb{Z}.\) These points are marked on the circle with blue circles and green squares, respectively.

Domain of the function y=sec(x)+csc(x)
Figure 3.

We can combine both sets and represent the domain of the function in the following form:

\[\text{dom}\left( y \right) = \left\{ {x \in \mathbb{R} \left|\,x \ne \frac{{\pi n}}{2}\right., n \in \mathbb{Z}} \right\}.\]

Example 4.

Find the domain of the function \[y = \sec 2x + \csc 4x.\]

Solution.

The function \(\sec 2x = \frac{1}{{\cos 2x}}\) is undefined at the following points

\[\cos 2x = 0, \Rightarrow 2x = \frac{\pi }{2} + \pi n, \Rightarrow x = \frac{\pi }{4} + \frac{{\pi n}}{2},\,n \in \mathbb{Z}.\]

We depict these values on the circle with blue dots.

Domain of the function y=sec(2x)+csc(4x)
Figure 4.

The function \(\csc 4x = \frac{1}{{\sin 4x}}\) is undefined at the points in which \(\sin 4x = 0,\) that is

\[\sin 4x = 0, \Rightarrow 4x = \pi n, \Rightarrow x = \frac{{\pi n}}{4},\,n \in \mathbb{Z}.\]

These solutions are marked on the circle by green squares.

As it can be seen, the first set of points is a subset of the second set. Hence, the domain of the function is given by

\[\text{dom}\left( y \right) = \left\{ {x \in \mathbb{R} \left|\,x \ne \frac{{\pi n}}{4}\right., n \in \mathbb{Z}} \right\}.\]

Example 5.

Sketch a graph of the function \[y = 3\sec \frac{x}{2}.\]

Solution.

We take the basic secant function \({y_1} = \sec x\) and make the following transformations:

\[\underbrace {\sec x}_{{y_1}} \to \underbrace {\sec \frac{x}{2}}_{{y_2}} \to \underbrace {3\sec \frac{x}{2}}_{{y_3}}.\]

The function \({y_2} = \sec \frac{x}{2}\) is obtained from \({y_1} = \sec x\) by horizontal stretching by a factor of \(2.\) The function \({y_2} = \sec \frac{x}{2}\) has vertical asymptotes at the points \(\ldots - 3\pi , - \pi ,\pi ,3\pi , \ldots\) and period \(4\pi.\)

The following transformation \({y_2} \to {y_3}\) stretches the graphs of \({y_2} = \sec \frac{x}{2}\) vertically by multiplying the coordinate of each point by \(3.\)

Graph of the function y=3sec(x/2)
Figure 5.

Example 6.

Sketch a graph of the function \[y = 2 - 2\csc x.\]

Solution.

Consider the cosecant function \({y_1} = \csc x.\) The graph of \({y_2} = 2\csc x\) is a stretch along the \(y-\)axis by a factor of \(2.\)

To get the function \({y_3} = -2\csc x\) we reflect the graph of \({y_2}\) about the \(x-\)axis.

The final function \({y_4} = 2 - 2\csc x\) is obtained by shifting the graph of \({y_3} = -2\csc x\) \(2\) units up.

Graph of the function y=2-2csc(x)
Figure 6.
Page 1 Page 2