Calculus

Surface Integrals

Surface Integrals Logo

Geometric Applications of Surface Integrals

Solved Problems

Example 3.

Compute the surface area of the torus with equation

\[{z^2} + {\left( {r - b} \right)^2} = {a^2} \left( {0 \le a \le b} \right)\]

in cylindrical coordinates.

Solution.

The parametric equations for the torus (see Figure \(2\)) are

\[\left\{ \begin{array}{l} x = \left( {b + a\cos \psi } \right)\cos \varphi \\ y = \left( {b + a\cos \psi } \right)\sin\varphi \\ z = a\sin \psi \end{array} \right..\]
Torus
Figure 2.

Let us make sure that these equations properly desrcibe the circle in the toric section. Indeed, since \({x^2} + {y^2} = {r^2},\) then after substitution we get

\[{\left( {b + a\cos \psi } \right)^2}{\cos ^2}\varphi + {\left( {b + a\cos \psi } \right)^2}{\sin^2}\varphi = {r^2},\;\; \Rightarrow {\left( {b + a\cos \psi } \right)^2} = {r^2},\;\; \Rightarrow r = b + a\cos \psi ,\;\; \Rightarrow r - b = a\cos \psi ,\;\; \Rightarrow {\left( {r - b} \right)^2} + {z^2} = {\left( {a\cos \psi } \right)^2} + {\left( {a\sin \psi } \right)^2},\;\; \Rightarrow {\left( {r - b} \right)^2} + {z^2} = {a^2}.\]

Thus, the surface of the torus is parametrized by the position vector:

\[\mathbf{r}\left( {\varphi ,\psi } \right) = \left( {b + a\cos \psi } \right)\cos \varphi \cdot \mathbf{i} + \left( {b + a\cos \psi } \right)\sin\varphi \cdot \mathbf{j} + a\sin \psi \cdot \mathbf{k}.\]

The surface area is given by the formula

\[A = \iint\limits_S {dS} = \iint\limits_{D\left( {\varphi ,\psi } \right)} {\left| {\frac{{\partial \mathbf{r}}}{{\partial \varphi }} \times \frac{{\partial \mathbf{r}}}{{\partial \psi }}} \right|d\varphi d\psi } .\]

The cross product in this formula is calculated as follows:

\[\frac{{\partial \mathbf{r}}}{{\partial \varphi }} \times \frac{{\partial \mathbf{r}}}{{\partial \psi }} = \left| {\begin{array}{*{20}{c}} \mathbf{i} & \mathbf{j} & \mathbf{k}\\ { - \left( {b + a\cos \psi } \right)\sin \varphi } & {\left( {b + a\cos \psi } \right)\cos\varphi } & 0\\ { - a\sin \psi \cos \varphi } & { - a\sin \psi \sin \varphi } & {a\cos\psi } \end{array}} \right| = a\cos\psi \left( {b + a\cos \psi } \right)\cos\varphi \cdot \mathbf{i} + a\cos\psi \left( {b + a\cos \psi } \right)\sin\varphi \cdot \mathbf{j} + \left[ {a\sin \psi \,{{\sin }^2}\varphi \left( {b + a\cos \psi } \right) + a\sin \psi \,{{\cos }^2}\varphi \left( {b + a\cos \psi } \right)} \right] \cdot \mathbf{k} = a\cos\varphi \cos \psi \left( {b + a\cos \psi } \right) \cdot \mathbf{i} + a\sin\varphi \cos \psi \left( {b + a\cos \psi } \right) \cdot \mathbf{j} + a\sin\psi \left( {b + a\cos \psi } \right) \cdot \mathbf{k}.\]

Then the absolute value of the cross product is

\[\left| {\frac{{\partial \mathbf{r}}}{{\partial \varphi }} \times \frac{{\partial \mathbf{r}}}{{\partial \psi }}} \right| = \left[ {{a^2}{\cos^2}\varphi \,{{\cos }^2}\psi {{\left( {b + a\cos \psi } \right)}^2}} \right. + {a^2}{\sin^2}\varphi \,{\cos ^2}\psi {\left( {b + a\cos \psi } \right)^2} + {\left. {{a^2}{{\sin }^2}\psi {{\left( {b + a\cos \psi } \right)}^2}} \right]^{\frac{1}{2}}} = a{\left[ {{{\cos }^2}\psi {{\left( {b + a\cos \psi } \right)}^2} + {{\sin }^2}\psi {{\left( {b + a\cos \psi } \right)}^2}} \right]^{\frac{1}{2}}} = a\left( {b + a\cos \psi } \right).\]

Now we can find the surface area of the torus:

\[A = \iint\limits_S {dS} = \iint\limits_{D\left( {\varphi ,\psi } \right)} {a\left( {b + a\cos \psi } \right)d\varphi d\psi } = a\int\limits_0^{2\pi } {d\varphi } \int\limits_0^{2\pi } {\left( {b + a\cos \psi } \right)d\psi } = 2\pi a\int\limits_0^{2\pi } {\left( {b + a\cos \psi } \right)d\psi } = 2\pi a\left[ {\left. {\left( {b\psi + a\sin \psi } \right)} \right|_0^{2\pi }} \right] = 2\pi a \cdot 2\pi b = 4{\pi ^2}ab.\]

Example 4.

Find the volume of the ellipsoid \[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1.\]

Solution.

We use the following formula to calculate the volume of the ellipsoid:

\[V = \frac{1}{3}\left| {\iint\limits_S {xdydz + ydxdz + zdxdy} } \right|.\]

The surface \(S\) of the ellipsoid can be parametrized by

\[\mathbf{r}\left( {u,v} \right) = a\cos u\sin v \cdot \mathbf{i} + b\sin u\sin v \cdot \mathbf{j} + c\cos v \cdot \mathbf{k},\;\; \text{where} \;\; 0 \le u \le 2\pi ,\;\; 0 \le v \le \pi .\]

(The variables \(u, v\) correspond to spherical coordinates \(\psi\) and \(\theta\).)

According to the formula for the volume given above, we identify that the vector field here is \(\mathbf{F} = \left( {x,y,z} \right),\) so that

\[P = x = a\cos u\sin v,\;\; Q = y = b\sin u\sin v,\;\; R = z = c\cos v.\]

Since

\[\iint\limits_S {Pdydz + Qdzdx + Rdxdy} = \iint\limits_{D\left( {u,v} \right)} {\left| {\begin{array}{*{20}{c}} P & Q & R\\ {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial z}}{{\partial u}}}\\ {\frac{{\partial x}}{{\partial v}}}&{\frac{{\partial y}}{{\partial v}}}&{\frac{{\partial z}}{{\partial v}}} \end{array}} \right|dudv} ,\]

we obtain the following expression for the surface integral:

\[\iint\limits_S {xdydz + ydzdx + zdxdy} = \iint\limits_{D\left( {u,v} \right)} {\left| {\begin{array}{*{20}{c}} {a\cos u\sin v}&{b\sin u\sin v}&{c\cos v}\\ { - a\sin u\sin v}&{b\cos u\sin v}&0\\ {a\cos u \cos v}&{b\sin u\cos v}&{ - c\sin v} \end{array}} \right|dudv} = \int\limits_{D\left( {u,v} \right)} {\left[ {a\cos u\sin v\left( { - bc\cos u\,{{\sin }^2}v} \right)} \right.} - b\sin u\sin v\left( {ac\sin u\,{{\sin }^2}v} \right) + \left. {c\cos v\left( { - ab\,{{\sin }^2}u\sin v\cos v - ab\,{{\cos }^2}u\sin v\cos v} \right)} \right]dudv = - abc\iint\limits_{D\left( {u,v} \right)} {\left[ {{{\sin }^3}v\left( {{{\cos }^2}u + {{\sin }^2}u} \right) + \sin v\,{{\cos }^2}v} \right]dudv} = - abc\iint\limits_{D\left( {u,v} \right)} {\sin v\left( {{{\sin }^2}v + {{\cos }^2}v} \right)dudv} = - abc\iint\limits_{D\left( {u,v} \right)} {\sin v dudv} = - abc\iint\limits_0^{2\pi } {du} \int\limits_0^\pi {\sin v dv} = - abc \cdot 2\pi \cdot \left. {\left( { - \cos v} \right)} \right|_0^\pi = 2\pi abc \cdot \left( {\cos \pi - \cos 0} \right) = - 4\pi abc.\]

Hence, the volume of the ellipsoid is

\[V = \left| {\frac{1}{3}\left( { - 4\pi abc} \right)} \right| = \frac{{4\pi abc}}{3}.\]
Page 1 Page 2