Calculus

Applications of Integrals

Applications of Integrals Logo

Center of Mass and Moments

Solved Problems

Example 5.

Find the centroid of the region bounded by the cubic curve \[y = x^3,\] the vertical line \(x = 1,\) and the \(x-\)axis.

Solution.

Centroid of the region enclosed by the cubic curve y=x^3, vertical line x=1 and the x-axis.
Figure 9.

Assuming that \(\rho = 1,\) we calculate the first moments \({M_x}\) and \({M_y}:\)

\[{M_x} = \frac{1}{2}\int\limits_a^b {\rho \left( x \right)\left[ {{f^2}\left( x \right) - {g^2}\left( x \right)} \right]dx} = \frac{1}{2}\int\limits_0^1 {{{\left( {{x^3}} \right)}^2}dx} = \frac{1}{2}\int\limits_0^1 {{x^6}dx} = \left. {\frac{{{x^7}}}{{14}}} \right|_0^1 = \frac{1}{{14}};\]
\[{M_y} = \int\limits_a^b {x\rho \left( x \right)\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_0^1 {\left( {x \cdot {x^3}} \right)dx} = \int\limits_0^1 {{x^4}dx} = \left. {\frac{{{x^5}}}{5}} \right|_0^1 = \frac{1}{5}.\]

The mass \(m\) of the region is given by

\[m = \int\limits_a^b {\rho \left( x \right)\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \int\limits_0^1 {{x^3}dx} = \left. {\frac{{{x^4}}}{4}} \right|_0^1 = \frac{1}{4}.\]

It follows from here that

\[\bar x = \frac{{{M_y}}}{m} = \frac{{\frac{1}{5}}}{{\frac{1}{4}}} = \frac{4}{5},\;\; \bar y = \frac{{{M_x}}}{m} = \frac{{\frac{1}{{14}}}}{{\frac{1}{4}}} = \frac{2}{7}.\]

Example 6.

Find the centroid of the region enclosed by the curves \[y = \sqrt x,\,y = {x^2}.\]

Solution.

Centroid of the region bounded by the square root function y=sqrt(x) and parabola y=x^2.
Figure 10.

Let \(\rho\) be the density of the lamina. The total mass is equal to

\[m = \rho \int\limits_a^b {\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \rho \int\limits_0^1 {\left( {\sqrt x - {x^2}} \right)dx} = \rho \left. {\left( {\frac{{2{x^{\frac{3}{2}}}}}{3} - \frac{{{x^3}}}{3}} \right)} \right|_0^1 = \frac{\rho }{3}.\]

Compute the first moments \({M_x}\) and \({M_y}:\)

\[{M_x} = \frac{\rho }{2}\int\limits_a^b {\left[ {{f^2}\left( x \right) - {g^2}\left( x \right)} \right]dx} = \frac{\rho }{2}\int\limits_0^1 {\left[ {{{\left( {\sqrt x } \right)}^2} - {{\left( {{x^2}} \right)}^2}} \right]dx} = \frac{\rho }{2}\int\limits_0^1 {\left( {x - {x^4}} \right)dx} = \frac{\rho }{2}\left. {\left( {\frac{{{x^2}}}{2} - \frac{{{x^5}}}{5}} \right)} \right|_0^1 = \frac{{3\rho }}{{20}};\]
\[{M_y} = \rho \int\limits_a^b {x\left[ {f\left( x \right) - g\left( x \right)} \right]dx} = \rho \int\limits_0^1 {x\left( {\sqrt x - {x^2}} \right)dx} = \rho \int\limits_0^1 {\left( {{x^{\frac{3}{2}}} - {x^3}} \right)dx} = \rho \left. {\left( {\frac{{2{x^{\frac{5}{2}}}}}{5} - \frac{{{x^4}}}{4}} \right)} \right|_0^1 = \frac{{3\rho }}{{20}}.\]

Hence, the centroid of the region \(G\left( {\bar x,\bar y} \right)\) has the coordinates

\[\bar x = \frac{{{M_y}}}{m} = \frac{{\frac{{3 \bcancel{\rho} }}{{20}}}}{{\frac{ \bcancel{\rho} }{3}}} = \frac{9}{{20}},\;\; \bar y = \frac{{{M_x}}}{m} = \frac{{\frac{{3 \bcancel{\rho} }}{{20}}}}{{\frac{ \bcancel{\rho} }{3}}} = \frac{9}{{20}}.\]

Example 7.

Find the centroid of the region bounded by the arc of the ellipse \[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\] lying in the first quadrant and the coordinate axes.

Solution.

Centroid of the region bounded by the arc of the ellipse and coordinate axes.
Figure 11.

It is convenient to write the equation of the arc 0f the ellipse in explicit form:

\[\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1,\;\; \Rightarrow \frac{{{y^2}}}{{{b^2}}} = 1 - \frac{{{x^2}}}{{{a^2}}},\;\; \Rightarrow {y^2} = \frac{{{b^2}}}{{{a^2}}}\sqrt {{a^2} - {x^2}} ,\;\; \Rightarrow y = \frac{b}{a}\sqrt {{a^2} - {x^2}} .\]

Determine the mass of the region assuming that \(\rho = 1.\)

\[m = \int\limits_0^a {f\left( x \right)dx} = \frac{b}{a}\int\limits_0^a {\sqrt {{a^2} - {x^2}} dx} .\]

This integral can be evaluated using the substitution

\[x = a\sin t,\;\; \Rightarrow \sqrt {{a^2} - {x^2}} = a\cos t,\;\; dx = a\cos tdt.\]

When \(x = 0,\) \(t = 0,\) and when \(x = a,\) \(t = \frac{\pi}{2}.\) So the mass of the region is given by

\[m = \frac{b}{a}\int\limits_0^{\frac{\pi }{2}} {a\cos t \cdot a\cos tdt} = ab\int\limits_0^{\frac{\pi }{2}} {{{\cos }^2}tdt} = \frac{{ab}}{2}\int\limits_0^{\frac{\pi }{2}} {\left( {1 + \cos 2t} \right)dt} = \frac{{ab}}{2}\left. {\left( {t + \frac{{\sin 2t}}{2}} \right)} \right|_0^{\frac{\pi }{2}} = \frac{{ab}}{2} \cdot \frac{\pi }{2} = \frac{{\pi ab}}{4}.\]

Calculate the first moments \({M_x}\) and \({M_y}.\)

\[{M_x} = \frac{1}{2}\int\limits_0^a {{f^2}\left( x \right)dx} = \frac{{{b^2}}}{{2{a^2}}}\int\limits_0^a {\left( {{a^2} - {x^2}} \right)dx} = \frac{{{b^2}}}{{2{a^2}}}\left. {\left( {{a^2}x - \frac{{{x^3}}}{3}} \right)} \right|_0^a = \frac{{{b^2}}}{{2{a^2}}}\left( {{a^3} - \frac{{{a^3}}}{3}} \right) = \frac{{{b^2}a}}{3}.\]
\[{M_y} = \int\limits_0^a {xf\left( x \right)dx} = \frac{b}{a}\int\limits_0^a {x\sqrt {{a^2} - {x^2}} dx} .\]

Make the substitution:

\[{a^2} - {x^2} = {z^2},\;\; \Rightarrow - 2xdx = 2zdz,\;\; \Rightarrow xdx = - zdz.\]

When \(x = 0,\) \(z = a,\) and when \(x = a,\) \(z = 0.\) Hence,

\[{M_y} = \frac{b}{a}\int\limits_a^0 {\left( { - {z^2}} \right)dz} = \frac{b}{a}\int\limits_0^a {{z^2}dz} = \left. {\frac{b}{a}\frac{{{z^3}}}{3}} \right|_0^a = \frac{{b{a^2}}}{3}.\]

The centroid of the region \(G\left( {\bar x,\bar y} \right)\) has the following coordinates:

\[\bar x = \frac{{{M_y}}}{m} = \frac{{\frac{{b{a^2}}}{3}}}{{\frac{{\pi ab}}{4}}} = \frac{{4a}}{{3\pi }},\;\; \bar y = \frac{{{M_x}}}{m} = \frac{{\frac{{{b^2}a}}{3}}}{{\frac{{\pi ab}}{4}}} = \frac{{4b}}{{3\pi }}.\]

Example 8.

An isosceles triangle with vertices \(A( - 1,0),\) \(B(1,0),\) \(C(0,2)\) has the density distribution according to the law \[\rho \left( y \right) = 1 + {y^2}.\] Find the center of mass of the triangle.

Solution.

Centroid of an isosceles triangle with the density distribution rho(y)=1+y^2.
Figure 12.

By symmetry, the center of mass \(G\left( {\bar x,\bar y} \right)\) of the triangle must lie on the \(y-\)axis, so we need to determine only the \(\bar y-\)coordinate.

The density \(\rho\) of the triangular lamina varies along the \(y-\)axis. Therefore, to calculate the first moment \({M_x},\) we use the formula

\[{M_x} = \int\limits_c^d {y\rho \left( y \right)\left[ {f\left( y \right) – g\left( y \right)} \right]dy}.\]

The legs of the isosceles triangle have the following equations:

\[AC:\;x = g\left( y \right) = \frac{y}{2} - 1;\]
\[BC:\;x = f\left( y \right) = -\frac{y}{2} + 1.\]

Since

\[f\left( y \right) - g\left( y \right) = \left( { - \frac{y}{2} + 1} \right) - \left( {\frac{y}{2} - 1} \right) = 2 - y,\]

the first moment \({M_x}\) is equal to

\[{M_x} = \int\limits_0^2 {y\left( {1 + {y^2}} \right)\left( {2 - y} \right)dy} = \int\limits_0^2 {\left( {2y - {y^2} + 2{y^3} - {y^4}} \right)dy} = \left. {\left( {{y^2} - \frac{{{y^3}}}{3} + \frac{{{y^4}}}{2} - \frac{{{y^5}}}{5}} \right)} \right|_0^2 = 4 - \frac{8}{3} + 8 - \frac{{32}}{5} = \frac{{44}}{{15}}.\]

Compute the mass of the lamina:

\[m = \int\limits_c^d {\rho \left( y \right)\left[ {f\left( y \right) - g\left( y \right)} \right]dy} = \int\limits_0^2 {\left( {1 + {y^2}} \right)\left( {2 - y} \right)dy} = \int\limits_0^2 {\left( {2 - y + 2{y^2} - {y^3}} \right)dy} = \left. {\left( {2y - \frac{{{y^2}}}{2} + \frac{{2{y^3}}}{3} - \frac{{{y^4}}}{4}} \right)} \right|_0^2 = \cancel{4} - 2 + \frac{{16}}{3} - \cancel{4} = \frac{{10}}{3}.\]

Hence,

\[\bar y = \frac{{{M_x}}}{m} = \frac{{\frac{{44}}{{15}}}}{{\frac{{10}}{3}}} = \frac{{22}}{{25}}.\]

Thus, the center of mass of the triangular lamina is at the point

\[G\left( {\bar x,\bar y} \right) = G\left( {0,\frac{{22}}{{25}}} \right).\]

Example 9.

Find the centroid of a circular sector with radius \(R\) and angle \(\alpha.\)

Solution.

Centroid of a circular sector with radius R and angle alpha.
Figure 13.

Let \(G\left( {\bar x,\bar y} \right)\) be the centroid of the circular sector. It is convenient to consider the circle as a polar curve given by the equation \(r\left( \theta \right) = R,\) where the angle \(\theta\) varies from \(0\) to \(\alpha.\)

We can compute the coordinates \(\bar x,\) \(\bar y\) by the formulas

\[\bar x = \frac{2}{3}\frac{{\int\limits_0^\alpha {{r^3}\left( \theta \right)\cos \theta d\theta } }}{{\int\limits_0^\alpha {{r^2}\left( \theta \right)d\theta } }},\;\; \bar y = \frac{2}{3}\frac{{\int\limits_0^\alpha {{r^3}\left( \theta \right)\sin \theta d\theta } }}{{\int\limits_0^\alpha {{r^2}\left( \theta \right)d\theta } }}.\]

This yields:

\[\bar x = \frac{2}{3}\frac{{\int\limits_0^\alpha {{R^3}\cos \theta d\theta } }}{{\int\limits_0^\alpha {{R^2}d\theta } }} = \frac{{2R}}{3}\frac{{\int\limits_0^\alpha {\cos \theta d\theta } }}{{\int\limits_0^\alpha {d\theta } }} = \frac{{2R}}{3}\frac{{\left. {\left( {\sin \theta } \right)} \right|_0^\alpha }}{\alpha } = \frac{{2R\sin \alpha }}{{3\alpha }};\]
\[\bar y = \frac{2}{3}\frac{{\int\limits_0^\alpha {{R^3}\sin \theta d\theta } }}{{\int\limits_0^\alpha {{R^2}d\theta } }} = \frac{{2R}}{3}\frac{{\int\limits_0^\alpha {\sin \theta d\theta } }}{{\int\limits_0^\alpha {d\theta } }} = \frac{{2R}}{3}\frac{{\left. {\left( { - \cos \theta } \right)} \right|_0^\alpha }}{\alpha } = \frac{{2R\left( {1 - \cos \alpha } \right)}}{{3\alpha }}.\]

Thus, the centroid of the circular sector is located at the point

\[G\left( {\bar x,\bar y} \right) = G\left( {\frac{{2R\sin \alpha }}{{3\alpha }},\frac{{2R\left( {1 - \cos \alpha } \right)}}{{3\alpha }}} \right).\]

Example 10.

Find the centroid of the region enclosed by the cardioid \[r\left( \theta \right) = 1 + \cos \theta .\]

Solution.

Centroid of the cardioid r=1+cos(theta).
Figure 14.

Let the centroid be at the point \(G\left( {\bar x,\bar y} \right).\) By symmetry, the \(\bar y\) coordinate of the centroid is equal to zero. We calculate the \(\bar x\) coordinate by the formula

\[\bar x = \frac{2}{3}\frac{{\int\limits_\alpha ^\beta {{r^3}\left( \theta \right)\cos \theta d\theta } }}{{\int\limits_\alpha ^\beta {{r^2}\left( \theta \right)d\theta } }}.\]

The integral in the denominator \({\int\limits_\alpha ^\beta {{r^2}\left( \theta \right)d\theta } }\) is equal to \(2A,\) where \(A\) is the area of the polar region. We can easily evaluate it:

\[\int\limits_\alpha ^\beta {{r^2}\left( \theta \right)d\theta } = 2\int\limits_0^\pi {{{\left( {1 + \cos \theta } \right)}^2}d\theta } = 2\int\limits_0^\pi {\left( {1 + 2\cos \theta + {{\cos }^2}\theta } \right)d\theta } = 2\int\limits_0^\pi {\left( {\frac{3}{2} + 2\cos \theta + \frac{{\cos 2\theta }}{2}} \right)d\theta } = 2\left. {\left( {\frac{3}{2}\theta + 2\sin \theta + \frac{{\sin 2\theta }}{4}} \right)} \right|_0^\pi = 3\pi .\]

Consider now the integral in the numerator:

\[\int\limits_\alpha ^\beta {{r^3}\left( \theta \right)\cos \theta d\theta } = \int\limits_\alpha ^\beta {{{\left( {1 + \cos \theta } \right)}^3}\cos \theta d\theta } .\]

The integrand is written in the form:

\[{\left( {1 + \cos \theta } \right)^3}\cos \theta = \cos \theta + 3{\cos ^2}\theta + 3{\cos ^3}\theta + {\cos ^4}\theta .\]

Using the trig identities

\[{\cos ^2}\theta = \frac{{1 + \cos 2\theta }}{2},\]
\[{\cos ^3}\theta = \frac{{3\cos \theta + \cos 3\theta }}{4},\]
\[{\cos ^4}\theta = \frac{{\cos 4\theta + 4\cos 2\theta + 3}}{8},\]

we can rewrite the integrand as follows:

\[{\left( {1 + \cos \theta } \right)^3}\cos \theta = \frac{{15}}{8} + \frac{{13\cos \theta }}{4} + 2\cos 2\theta + \frac{{3\cos 3\theta }}{4} + \frac{{\cos 4\theta }}{8}.\]

Integrating from \(\theta = 0\) to \(\theta = 2\pi\) gives the following answer:

\[\int\limits_0^{2\pi } {{{\left( {1 + \cos \theta } \right)}^3}\cos \theta d\theta } = \frac{{15}}{8} \cdot 2\pi = \frac{{15\pi }}{4}\]

Hence, the \(\bar x\) coordinate of the centroid is equal to

\[\bar x = \frac{2}{3}\frac{{\frac{{15\pi }}{4}}}{{3\pi }} = \frac{5}{6},\]

so the answer is \(G\left( {\bar x,\bar y} \right) = \left( {\frac{5}{6},0} \right).\)

Page 1 Page 2