Cartesian Product of Sets
Solved Problems
Example 1.
Given \(A = \{1,2,5\}\) and \(B = \{1,2\}.\) Find the following sets:
- \({A \times B}\)
- \({B \times A}\)
- \({A^2}\)
- \({B^2}\)
Solution.
- By definition, the Cartesian product \({A \times B}\) contains all possible ordered pairs \(\left({a,b}\right)\) such that \(a \in A\) and \(b \in B.\) Therefore, we can write
\[A \times B = \left\{ {1,2,5} \right\} \times \left\{ {1,2} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {5,1} \right),\left( {5,2} \right)} \right\}.\]
- Similarly we find the Cartesian product \({B \times A}:\)
\[B \times A = \left\{ {1,2} \right\} \times \left\{ {1,2,5} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,5} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,5} \right)} \right\}.\]
- The Cartesian square \(A^2\) is defined as \({A \times A}.\) So, we have
\[{A^2} = A \times A = \left\{ {1,2,5} \right\} \times \left\{ {1,2,5} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {1,5} \right),\left( {2,1} \right),\left( {2,2} \right),\left( {2,5} \right),\left( {5,1} \right),\left( {5,2} \right),\left( {5,5} \right)} \right\}.\]
- The Cartesian square \(B^2\) is given by
\[{B^2} = B \times B = \left\{ {1,2} \right\} \times \left\{ {1,2} \right\} = \left\{ {\left( {1,1} \right),\left( {1,2} \right),\left( {2,1} \right),\left( {2,2} \right)} \right\}.\]
Example 2.
Given \(A = \{a,b,c\}\) and \(B = \{b,c\}.\) Find the following sets:
- \(\left( {A \times B} \right) \cap \left( {B \times A} \right)\)
- \(\left( {A \times B} \right) \cup \left( {B \times A} \right)\)
Solution.
- We calculate the Cartesian products \({A \times B}\) and \({B \times A}\) and then determine their intersection:
\[A \times B = \left\{ {a,b,c} \right\} \times \left\{ {b,c} \right\} = \left\{ {\left( {a,b} \right),\left( {a,c} \right),\left( {b,b} \right),\left( {b,c} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\},\]\[B \times A = \left\{ {b,c} \right\} \times \left\{ {a,b,c} \right\} = \left\{ {\left( {b,a} \right),\left( {b,b} \right),\left( {b,c} \right),\left( {c,a} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\},\]\[\left( {A \times B} \right) \cap \left( {B \times A} \right) = \left\{ {\left( {b,b} \right),\left( {b,c} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\}.\]
- The union of the Cartesian products \({A \times B}\) and \({B \times A}\) is given by:
\[\left( {A \times B} \right) \cup \left( {B \times A} \right) = \left\{ {\left( {a,b} \right),\left( {b,a} \right),\left( {a,c} \right),\left( {c,a} \right),\left( {b,b} \right),\left( {b,c} \right),\left( {c,b} \right),\left( {c,c} \right)} \right\}.\]
Example 3.
Suppose \(A = \{x,y\},\) \(B = \{1,2\}\) and \(C = \{2,3\}.\) Determine the sets:
- \(A \times \left( {B \cup C} \right)\)
- \(\left( {A \times B} \right) \cup \left( {A \times C} \right)\)
Solution.
- First we find the union of the sets \(B\) and \(C:\)
\[B \cup C = \left\{ {1,2} \right\} \cup \left\{ {2,3} \right\} = \left\{ {1,2,3} \right\}.\]Then the Cartesian product of \(A\) and \(B \cup C\) is given by\[A \times \left( {B \cup C} \right) = \left\{ {x,y} \right\} \times \left\{ {1,2,3} \right\} = \left\{ {\left( {x,1} \right),\left( {x,2} \right),\left( {x,3} \right),\left( {y,1} \right),\left( {y,2} \right),\left( {y,3} \right)} \right\}.\]
- Compute the Cartesian products of given sets:
\[A \times B = \left\{ {x,y} \right\} \times \left\{ {1,2} \right\} = \left\{ {\left( {x,1} \right),\left( {x,2} \right),\left( {y,1} \right),\left( {y,2} \right)} \right\}.\]\[A \times C = \left\{ {x,y} \right\} \times \left\{ {2,3} \right\} = \left\{ {\left( {x,2} \right),\left( {x,3} \right),\left( {y,2} \right),\left( {y,3} \right)} \right\}.\]Now we can find the union of the sets \(A \times B\) and \(A \times C:\)\[\left( {A \times B} \right) \cup \left( {A \times C} \right) = \left\{ {\left( {x,1} \right),\left( {x,2} \right),\left( {x,3} \right),\left( {y,1} \right),\left( {y,2} \right),\left( {y,3} \right)} \right\}.\]We see that\[A \times \left( {B \cup C} \right) = \left( {A \times B} \right) \cup \left( {A \times C} \right).\]This identity confirms the distributive property of Cartesian product over set union.
Example 4.
Suppose \(A = \{a,b\},\) \(B = \{4,6\}\) and \(C = \{5,6\}.\) Determine the sets:
- \(A \times \left( {B \cap C} \right)\)
- \(\left( {A \times B} \right) \cap \left( {A \times C} \right)\)
Solution.
- Find the intersection of the sets \(B\) and \(C:\)
\[B \cap C = \left\{ {4,6} \right\} \cap \left\{ {5,6} \right\} = \left\{ 6 \right\}.\]The Cartesian product of \(A\) and \(B \cap C\) is written as\[A \times \left( {B \cap C} \right) = \left\{ {a,b} \right\} \times \left\{ 6 \right\} = \left\{ {\left( {a,6} \right),\left( {b,6} \right)} \right\}.\]
- Compute the Cartesian products:
\[A \times B = \left\{ {a,b} \right\} \times \left\{ {4,6} \right\} = \left\{ {\left( {a,4} \right),\left( {a,6} \right),\left( {b,4} \right),\left( {b,6} \right)} \right\}.\]\[A \times C = \left\{ {a,b} \right\} \times \left\{ {5,6} \right\} = \left\{ {\left( {a,5} \right),\left( {a,6} \right),\left( {b,5} \right),\left( {b,6} \right)} \right\}.\]The intersection of the two sets is given by\[\left( {A \times B} \right) \cap \left( {A \times C} \right) = \left\{ {\left( {a,6} \right),\left( {b,6} \right)} \right\}.\]So, we have validated the distributive property of Cartesian product over set intersection:\[A \times \left( {B \cap C} \right) = \left( {A \times B} \right) \cap \left( {A \times C} \right).\]
Example 5.
Find the Cartesian product \(A \times \mathcal{P}\left( A \right)\) if \(A = \left\{ {0,1} \right\}.\)
Solution.
The power set of \(A\) is written in the form
Hence, the Cartesian product \(A \times \mathcal{P}\left( A \right)\) is given by
Example 6.
Find the Cartesian product \(\left\{ {1,2,3} \right\} \times \mathcal{P}\left( {\left\{ a \right\}} \right).\)
Solution.
The power set \(\mathcal{P}\left( {\left\{ a \right\}} \right)\) consists of one element and contains two subsets:
The Cartesian product of the sets \(\left\{ {1,2,3} \right\}\) and \(\mathcal{P}\left( {\left\{ a \right\}} \right)\) is given by
Example 7.
Let \(A = \left\{ {{a_1}, \ldots ,{a_n}} \right\}.\) Compute the cardinality of the set \(\mathcal{P}\left( {{A^m}} \right).\)
Solution.
If the set \(A\) has \(n\) elements, then the \(m\text{th}\) Cartesian power of \(A\) will contain \(n^m\) elements:
Then the cardinality of the power set of \(A^m\) is
Example 8.
Let \(X = \left\{ {x,y} \right\}.\) Compute the cardinality of the set \(\mathcal{P}\left( {\mathcal{P}\left( X \right)} \right) \times \mathcal{P}\left( X \right).\)
Solution.
First we find the power set of \(X:\)
We see that \(\mathcal{P}\left( X \right)\) contains \(4\) elements:
It is clear that the power set of \(\mathcal{P}\left( X \right)\) will have \(16\) elements:
Consider now the Cartesian product:
so the cardinality of the given set is equal to \(64.\)