Calculus

Set Theory

Set Theory Logo

Cantor-Schröder-Bernstein Theorem

Solved Problems

Example 1.

Let \(A \subseteq B \subseteq C.\) Show that if \(\left| A \right| = \left| C \right|,\) then \(\left| A \right| = \left| B \right|.\)

Solution.

Since \(A\) is a subset of \(B,\) there exists an injection \(A \to B,\) so we have \(\left| A \right| \le \left| B \right|.\) Likewise, since \(B \subseteq C,\) we find that \(\left| B \right| \le \left| C \right|.\) As a result, we obtain the double inequality

\[\left| A \right| \le \left| B \right| \le \left| C \right|.\]

By condition, \(\left| A \right| = \left| C \right|.\) Therefore, we have

\[\left| A \right| \le \left| B \right| \le \left| A \right|.\]

Using the Cantor-Schröder-Bernstein theorem, we get

\[\left| A \right| \le \left| B \right| \le \left| A \right|,\;\; \Rightarrow \left\{ {\begin{array}{*{20}{l}} {\left| A \right| \le \left| B \right|}\\ {\left| B \right| \le \left| A \right|} \end{array}} \right.,\;\; \Rightarrow \left| A \right| = \left| B \right|.\]

Example 2.

Show that \(\left| {{\mathbb{N}^{\mathbb{N}}}} \right| = \left| \mathbb{R} \right|,\) where \(\mathbb{N}^{\mathbb{N}}\) is the set of all infinite sequences of natural numbers.

Solution.

Since \(\left| \mathbb{R} \right| = \left| {\left( {0,1} \right)} \right|,\) we compare the cardinalities of \({{\mathbb{N}^{\mathbb{N}}}}\) and \({\left( {0,1} \right)}.\)

To build an injection \({\mathbb{N}^{\mathbb{N}}} \to \left( {0,1} \right),\) consider an arbitrary infinite sequence \(\left( {{a_1},{a_2},{a_3}, \ldots } \right) \in {\mathbb{N}^{\mathbb{N}}}\) where \({a_i} \in \mathbb{N}.\) This sequence is mapped to a number in the open unit interval:

\[\left( {{a_1},{a_2},{a_3}, \ldots } \right) \to 0.\underbrace {0 \cdots 0}_{{a_1}}1\underbrace {0 \cdots 0}_{{a_2}}1\underbrace {0 \cdots 0}_{{a_3}}1 \cdots .\]

Clearly, this mapping is injective.

To define \(\left| {\left( {0,1} \right)} \right| = \left| \mathbb{R} \right|,\) we use the fact that every real number has a unique infinite decimal representation. In this case, a finite decimal is converted into infinite one like

\[0.375 = 0.3749999 \cdots .\]

Let a real number \(b \in \left( {0,1} \right)\) be represented as

\[b = 0.{b_1}{b_2}{b_3} \cdots.\]

We can map the number \(b\) to the following infinite sequence:

\[0.{b_1}{b_2}{b_3} \cdots \to \left( {\underbrace {1, \ldots ,1}_{{b_1}},2,\underbrace {1, \ldots ,1}_{{b_2}},2,\underbrace {1, \ldots ,1}_{{b_3}},2, \ldots } \right) \in {\mathbb{N}^{\mathbb{N}}}.\]

This mapping is also injective.

Consequently, by the Cantor-Schröder-Bernstein theorem,

\[\left| {{\mathbb{N}^{\mathbb{N}}}} \right| = \left| {\left( {0,1} \right)} \right| = \left| \mathbb{R} \right|.\]

Example 3.

Prove that \(\left| {{\mathbb{R}^{\mathbb{N}}}} \right| = \left| \mathbb{R} \right|,\) where \({\mathbb{R}^{\mathbb{N}}}\) is the set of all infinite sequences of real numbers.

Solution.

Since \(\left| \mathbb{R} \right| = \left| {\mathcal{P}\left( \mathbb{N} \right)} \right| = {2^{\left| \mathbb{N} \right|}},\) we have

\[\left| {{\mathbb{R}^{\mathbb{N}}}} \right| = {\left( {{2^{\left| \mathbb{N} \right|}}} \right)^{\left| \mathbb{N} \right|}} = {2^{\left| \mathbb{N} \right| \times \left| \mathbb{N} \right|}} = {2^{\left| {\mathbb{N} \times \mathbb{N}} \right|}}.\]

Recall (see Countable and Uncountable Sets) that

\[\left| {\mathbb{N} \times \mathbb{N}} \right| = \left| \mathbb{N} \right|.\]

Hence,

\[\left| {{\mathbb{R}^{\mathbb{N}}}} \right| = {2^{\left| {\mathbb{N} \times \mathbb{N}} \right|}} = {2^{\left| \mathbb{N} \right|}} = \left| \mathbb{R} \right|.\]

Example 4.

Determine the cardinality of the set of all continuous functions of a real variable.

Solution.

According to Heine definition, a real function \(f\left( x \right)\) is said to be continuous at a point \(x \in \mathbb{R}\) if for any sequence \(\left\{ {{q_n}} \right\}\) such that

\[\lim\limits_{n \to \infty } {q_n} = x,\]

it holds that

\[\lim\limits_{n \to \infty } f\left( {{q_n}} \right) = f\left( x \right).\]

It is also known that for every \(x \in \mathbb{R},\) there exists a sequence of rational numbers \({q_n}\) that converges to \(x.\) Therefore, any continuous real-valued function \(f\) is determined by its values on the set of rational numbers \(\mathbb{Q}.\)

We denote the set of all continuous functions \(f:\mathbb{R} \to \mathbb{R}\) by \(C.\)

By restricting \(f\) to the rationals, we get a function \(f^{\prime}:\mathbb{Q} \to \mathbb{R}\) such that \(f\left( q \right) = f^{\prime}\left( q \right)\) for any \(q \in \mathbb{Q}.\) The mapping \(f \to f^{\prime}\) is injective, so

\[\left| C \right| \le \left| {{\mathbb{R}^{\mathbb{Q}}}} \right|.\]

Since \(\left| {{\mathbb{R}^{\mathbb{Q}}}} \right| = \left| {{\mathbb{R}^{\mathbb{N}}}} \right| = \left|\mathbb{R}\right|\) (see Example \(3\)), we have

\[\left| C \right| \le \left| \mathbb{R} \right|.\]

From the other side, there also exists an injection \(\mathbb{R} \to C.\) For example, we can map any real number \(\alpha \in \mathbb{R}\) to the constant function \({f_\alpha }: \mathbb{R} \to \mathbb{R}\) given by

\[{f_\alpha }\left( x \right) = \alpha. \]

All functions \(f_\alpha\) are continuous. Then, by the Cantor-Schröder-Bernstein theorem,

\[\left| C \right| = \left| \mathbb{R} \right|.\]
Page 1 Page 2